0
返回首页
1. 如图所示,等腰
与等腰
中,
,
,
, 则
( )
A.
9
B.
11
C.
10
D.
12
【考点】
三角形全等及其性质; 勾股定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
困难
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,在四边形
中,
、
相交于点
,
, 若
,
, 则.
的值为( )
A.
20
B.
22
C.
24
D.
26
单选题
容易
2. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、5、2、4,则最大正方形E的面积是( )
A.
15
B.
61
C.
69
D.
72
单选题
容易
3. 若一个直角三角形的两条直角边长分别为5和12,则其第三边的长为( )
A.
B.
9
C.
D.
13
单选题
容易
1. 如图,两个全等的矩形
, 矩形
如图所示放置.
所在直线与
分别交于点
.若
.则线段
的长度是( )
A.
B.
C.
D.
2
单选题
普通
2. 如图,在
中,分别以三角形的三条边为边向外作正方形,面积分别记为
,
,
. 若
,
, 则
的值为( )
A.
B.
C.
D.
单选题
普通
3. 如图,直线上有三个正方形a,b,c,若a,b的面积分别为5和13,则c的面积为( )
A.
4
B.
8
C.
12
D.
18
单选题
普通
1. 如图,在四边形
中,
, 连接
,
,
, 点
分别在边
上,且
, 连接
, 若
, 则
的最小值为
.
填空题
困难
2. 如图已知长方形
中
,
, 在边
上取一点E,将
折叠使点D恰好落在
边上的点F,则
的长为
.
填空题
普通
3. 如图,在
中,
, 点
在
上,作
交
于点
, 若
,
, 则
的长度为
.
填空题
普通
1. 已知,
与
均为直角三角形,
.
(1)
如图1,若点
共线,连接
, 且
, 求
的长;
(2)
如图2,若
, 连接
, 并延长
交
于点
,
, 猜想
与
的数量关系并证明;
(3)
如图3,
, 连接
, 点
, 点
分别为
与
的中点,连接
, 记
的最大值为
的最小值为
, 请直接写出
的值.
证明题
困难
2. 在
中,
,
为线段
上一点,连接
.
(1)
如图1,若
,
, 过
作
于
, 交
于
,
, 求线段
的长;
(2)
如图2,过点
作
交
延长线于点
, 以
为斜边在
的右侧作等腰直角三角形
, 过点
作
, 交
的延长线于点
,
. 猜想线段
,
,
的数量关系,并证明你的猜想;
(3)
如图3,
, 过
作
于
, 作
的角平分线交
于
, 取
的中点
, 连接
. 点
为直线
上的动点,连接
, 将
沿着
所在直线翻折至
所在平面得到
, 连接
, 取
中点
, 连接
. 将
绕着点
顺时针旋转至直线
上方
处,使得
. 当
取得最小值时,连接
,
,
, 当
以
为腰的等腰三角形时,请直接写出
的值.
证明题
困难
3. 如图,正方形
的边
,
在坐标轴上,点B的坐标为
, 点
从点A出发,以每秒1个单位长度的速度沿
轴向点
运动;点
从点
同时出发,以相同的速度沿
轴的正方向运动,规定点
到达点
时,点
也停止运动.连结
, 过
点作
的垂线,与过点
平行于
轴的直线
相交于点D.
与
轴交于点
, 连结
. 设点P运动的时间为
.
(1)
的度数为__________,点
的坐标为__________(用t表示);
(2)
当t为何值时,
是以
为顶点的等腰三角形.
(3)
探索
周长是否随时间t的变化而变化,若变化,说明理由,若不变,试求这个定值.
解答题
困难
1. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为
.
填空题
普通
2. 如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=
,EF=1,则GM的长为( )
A.
B.
C.
D.
单选题
困难
3. 如图,在平面直角坐标系中,Q是直线y=﹣
x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点
,连接
,则
的最小值为( )
A.
B.
C.
D.
单选题
困难