0
返回首页
1. 在数学活动课上,老师带领数学小组测量大树
的高度.如图,数学小组发现大树离教学楼
, 大树的影子有一部分落在地面上,还有一部分落在教学楼的墙上,墙上的影子
长为
, 已知此时高
的竹竿在水平地面上的影子长
, 那么这棵大树高度是多少?
【考点】
相似三角形的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 小刚和小亮想用测量工具和几何知识测量公园古树
的高度,由于有围栏保护,他们无法到达底部
, 如图,围栏
米,小刚在
延长线
点放一平面镜,镜子不动,当小刚走到点
时,恰好可以通过镜子看到树顶
, 这时小刚眼睛
与地面的高度
米,
米,
米;同时,小亮在
的延长线上的
处安装了测倾器(测倾器的高度忽略不计),测得树顶
的仰角
,
米,请根据题中提供的相关信息,求出古树
的高度.
解答题
容易
2. 如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙
的顶端C处,已知
,
, 且测得
米,
米,
米,求该古城墙的高度.
解答题
容易
3. 如图,路灯(
点)距地面8米,身高1.6米的小明从距路灯的底部(
点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
解答题
容易
1. 如图,在一个长40m,宽30m的长方形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地
m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处的小旗在阳光下的影子也恰好落在对角线AC上.求:
(1)他们的影子重叠时,两人相距多少米(DE的长)?
(2)张华追赶王刚的速度是多少?
解答题
普通
2. 如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
解答题
普通
3. 在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.
解答题
普通
1. 如图,为了估计河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B,使
与河岸垂直,在近岸取点C,E,使
,
,
与
交于点D.已测得
,
,
, 则河宽
为
.
填空题
普通
2. 在《数书九章》(宋·秦九韶)中记载了一个测量塔高的问题:如图所示,
表示塔的高度,
表示竹竿顶端到地面的高度,
表示人眼到地面的高度,
、
、
在同一平面内,点A、C、E在一条水平直线上.已知
米,
米,
米,
米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为
米.
填空题
普通
3. 如图,在小孔成像问题中,小孔 O到物体AB的距离是60 cm,小孔O到像CD的距离是30 cm,若物体AB的长为16 cm,则像 CD的长是
cm.
填空题
普通
1. 风力发电是我国电力资源的重要组成部分,嘉嘉为了解某风力发电机的风叶长度,通过测量其影子长度的方法进行计算,如图(图中所有点均在同一平面,太阳光线视为平行光线),线段
、
、
表示三片风叶,
,
, 某时刻
,
的影子恰好重合为线段
,
于点
, 测得
,
, 同一时刻测得高为4m的标杆
影长为3m.
(1)
直接写出
的度数及
的长;
(2)
求风叶转动时点
到地面
的最小距离.
综合题
普通
2. 在阳光下,测得一根与地面垂直、长为1米的竹竿的影长为2米.同时两名同学测量一棵树的高度时,发现树的影子不全落在地面上.
(1)
如图1:小明发现树的影子一部分落在地面上,还有一部分影子落在教学楼的墙壁上,量得墙壁上的影长
为3.5米,落在地面上的影长
为6米,求树
的高度.
(2)
如图2:小红发现树的影子恰好落在地面和一斜坡上,此时测得地面上的影长
为6米,坡面上的影长
为4米.已知斜坡的坡角为
, 则树的高度为多少米?(结果保留根号)
解答题
普通
3. 小明想测量电线杆
的高度,他发现电线杆
的影子正好落在坡面
和地面
上,已知
和地面成
角,
, 且此时刻得
高的标杆在地面的影长为
.
(1)
点D到地面的距离为
米
(2)
求电线杆
的高(结果保留根号)
(3)
若
是在坡底下C处的一棵大树,树尖刚好落在光线
上,在山坡上有一建筑物
高
, 求此时它落在坡面上的影长
(结果保留根号).
综合题
普通
1. 在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m 的雷锋雕像,那么该雕像的下部设计高度约是( )(结果精确到
.参考数据:
,
,
)
A.
B.
C.
D.
单选题
普通
2. 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为
米.
填空题
普通
3. 泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的( )
A.
图形的平移
B.
图形的旋转
C.
图形的轴对称
D.
图形的相似
单选题
普通