如图1,在△ABC中,∠ACB=90°,AC=BC=6,P为AC上一点,当AP的长为时,△ABP与△CBP为偏等积三角形.
如图2,△ABD与△ACD为偏等积三角形,AB=2,AC=4,且线段AD的长度为正整数,过点C作CE∥AB,交AD的延长线于点E,求AE的长.
如图3,已知△ABC和△ADE为两个等腰直角三角形,其中AC=AB,AD=AE,∠CAB=∠DAE=90°,F为CD的中点.请根据上述条件,回答以下问题:
①∠CAD+∠BAE的度数为 °;
②试探究线段AF与BE的数量关系,并写出解答过程.
【提出问题】徐老师提出了一个问题:如图1,在矩形ABCD中, , , P为AD边上的一动点,以PC为边向右作等边 , 连接BE , 如何求BE的最小值?
【探究发现】小亮发现:如图4所示,以BC为边向下构造一个等边 , 便可得到 , 进而将BE的最小值转化为PM的最小值的问题.
小刚受此启发,举一反三,提出新问题:如图2,若将图1当中构造的等边三角形,改为以PC为边向右构造正方形PCFG , 在运动过程中,求出BG的最小值.