0
返回首页
1. 如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )
A.
4
B.
8
C.
12
D.
16
【考点】
三角形全等及其性质; 正方形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于 ( )
A.
1
B.
C.
D.
单选题
容易
2. 如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )
A.
4cm
B.
6cm
C.
8cm
D.
10cm
单选题
容易
3. 若一个正方形的面积是28,则它的边长为( )
A.
B.
C.
D.
单选题
容易
1. 如图,
E
、
F
分别是正方形
ABCD
的边
CD
、
AD
上的点,且
,
AE
、
BF
相交于点
O
,
F
下列结论:⑴
;⑵
;⑶
;⑷
中正确的有( )
A.
4个
B.
3个
C.
2个
D.
1个
单选题
普通
2. 如图四边形
与
是并列放在一起的两个正方形,
是
与
的交点.如果正方形
的面积是9,
, 则
的面积为
A.
1
B.
C.
4
D.
单选题
普通
3. 如图,在
中,
, 分别以该直角三角形的三边为边,并在直线
同侧作正方形
、正方形
、正方形
, 且点
恰好在正方形
的边
上,其中
表示相应阴影部分面积,若
, 则
( )
A.
1
B.
C.
D.
条件不足,无法计算
单选题
困难
1. 如图,在正方形
ABCD
中,点
E
,
F
分别在
BC
,
CD
的延长线上,
CE
=
DF
, 点
G
,
H
分别是
DE
,
AF
的中点,连接
GH
, 延长
ED
交
AF
于点
I
.若
AB
=8 cm,
CE
=6 cm,则∠
FID
=
°,
GH
=
cm.
填空题
困难
2. 如图,正方形
中,点
分别在
上,连接
, 请添加一个条件:
,使
.
填空题
容易
3. 如图,正方形的顶点A,C分别在y轴和x轴上,边BC的中点F在y轴上,若反比例函数
的图象恰好经过CD的中点E,则OA的长为
.
填空题
困难
1. 如图,正方形
的边
,
在坐标轴上,点B的坐标为
, 点
从点A出发,以每秒1个单位长度的速度沿
轴向点
运动;点
从点
同时出发,以相同的速度沿
轴的正方向运动,规定点
到达点
时,点
也停止运动.连结
, 过
点作
的垂线,与过点
平行于
轴的直线
相交于点D.
与
轴交于点
, 连结
. 设点P运动的时间为
.
(1)
的度数为__________,点
的坐标为__________(用t表示);
(2)
当t为何值时,
是以
为顶点的等腰三角形.
(3)
探索
周长是否随时间t的变化而变化,若变化,说明理由,若不变,试求这个定值.
解答题
困难
2. 探究数学问题,我们通常遵循从特殊到一般的原则,关注问题的本质,这是数学学习的一个重要方法.
(1)
探究:如图①,在正方形
中,点E,F分别在
,
上,点G,H分别在
,
上且
. 则
;(直接写出答案)
(2)
迁移:矩形
中,
,
, 点E,F分别在
,
上,点G,H分别在
,
上且
, 求
的值,并写出解答过程;
(3)
应用:如图③,四边形
中,
,
,
,
, 点M,N分别在边
,
上,求
的值,并写出解答过程.
解答题
普通
3. 在正方形
中,E为
上一点,点M在
上,点N在
上,且
, 垂足为点F.
(1)
如图1,当点N与点C重合时,求证:
;
(2)
将图1中的
向上平移,使得F为
的中点,此时
与
相交于点H.
①依题意补全图2;
②用等式表示线段
之间的数量关系,并证明.
证明题
困难
1. 如图,在正方形ABCD中,
,对角线
相交于点O.点E是对角线AC上一点,连接BE,过点E作
,分别交
于点F、G,连接BF,交AC于点H,将
沿EF翻折,点H的对应点
恰好落在BD上,得到
若点F为CD的中点,则
的周长是
.
填空题
困难
2. 如图,正方形
ABCD
的边长为4,点
E
是边
BC
上一点,且
,以点
A
为圆心,3为半径的圆分别交
AB
、
AD
于点
F
、
G
,
DF
与
AE
交于点
H
. 并与
交于点
K
, 连结
HG
、
CH
. 给出下列四个结论.(1)
H
是
FK
的中点;(2)
;(3)
;(4)
,其中正确的结论有
(填写所有符合题意结论的序号).
填空题
困难
3. 已知:如图,在正方形
中,对角线
相交于点O,点
分别是边
上的点,且
.
求证:
.
证明题
普通