0
返回首页
1. 《九章算术》卷七“盈不足”有这样一段话:“今有良马与弩马发长安至齐.齐去长安三千里,良马初日行一百九十三里.日增十三里,驽马初日行九十七里,日减半里.”意思是:今有良马与弩马从长安出发到齐国,齐国与长安相距3000里,良马第一日走193里,以后逐日增加13里,弩马第一日走97里,以后逐日减少0.5里.则8天后两马之间的距离为
里.
【考点】
等差数列概念与表示; 等差数列的前n项和;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 古希腊著名科学家毕达哥拉斯把1,3,6,10,15,21,….这些数量的(石子),排成一个个如图一样的等边三角形,从第二行起每一行都比前一行多1个石子,像这样的数称为三角形数.那么把三角形数从小到大排列,第10个三角形数是
.
填空题
容易
2. 已知等差数列{a
n
}的前n项和为{S
n
},公差为d,若
,则d=
.
填空题
容易
3. 在等差数列{a
n
}中,首项a
1
=1,公差d=2,则它的前n项和S
n
=
.
填空题
容易
1. 数列{
a
n
},
a
n
=
n
+
c
,
S
7
<0,
c
的取值范围为
.
填空题
普通
2. 《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的
是较小的两份之和,则最小一份的量为
.
填空题
普通
3. 已知各项均为正数的数列
的前
项和为
, 且满足
, 则
.
填空题
普通
1. 已知数列
满足点
在直线
上,
的前
n
项和为
, 则
的最小值为( )
A.
-47
B.
-48
C.
-49
D.
-50
单选题
普通
2. 已知等差数列
的前
项和为
, 则
等于( )
A.
27
B.
24
C.
21
D.
18
单选题
普通
3. 已知数列
的前
项和为
, 且
,
, 则
( )
A.
210
B.
110
C.
50
D.
55
单选题
普通
1. 若数列
满足:对任意
, 都有
, 则称
是“
数列”.
(1)
若
,
, 判断
,
是否是“
数列”;
(2)
已知
是等差数列,
, 其前
项和记为
, 若
是“
数列”,且
恒成立,求公差
的取值范围;
(3)
已知
是各项均为正整数的等比数列,
, 记
, 若
是“
数列”,
不是“
数列”,
是“
数列”,求数列
的通项公式.
解答题
困难
2. 数列
的前n项和记为
, 已知
,
.
(1)
求证:
是等差数列;
(2)
若
,
,
成等比数列,求
的最大值.
解答题
普通
3. 已知数列
各项均为正数,且
.
(1)
求
的通项公式;
(2)
数列
满足
,
, 求数列
的前
项和.
解答题
普通
1. 若数列
通项公式为
,记前n项和为
,则
;
.
填空题
容易
2. 已知数列
中,
, 则数列
的前9项和等于
.
填空题
普通