0
返回首页
1. 在平面直角坐标系
中,二次函数
的图象经过点
.
(1)求二次函数的表达式;
(2)求二次函数图象的对称轴.
【考点】
待定系数法求二次函数解析式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知二次函数的顶点坐标为
, 且其图象经过点
, 求此二次函数的解析式.
解答题
容易
2. 已知抛物线的顶点坐标是
, 且抛物线经过点
. 求抛物线的二次函数的表达式.
解答题
容易
3. 已知二次函数图象经过点
, 且当
时,y有最大值5,求这个函数的解析式.
解答题
容易
1. 设二次函数
(
,
是常数)的图象与
轴交于
,
两点.
(1)
若
,
两点的坐标分别为
,
, 求函数
的表达式及其图象的对称轴;
(2)
若该二次函数
经过点
,
,
,
,
, 在
,
,
这三个实数中,只有一个是负数,求
的取值范围;
(3)
设一次函数
(
是常数),若函数
的表达式还可以写成
的形式,当函数
的图象经过点
时,求
的值.
解答题
普通
2. 在平面直角坐标系中,抛物线
经过点
, 其对称轴为直线
, 点
在该抛物线上,其横坐标为
. 以点
为对称中心,作正方形
. 使
轴,且点
的横坐标为1.
(1)
求该抛物线对应的函数关系式.
(2)
当点
与点
重合时,求抛物线的顶点到正方形
垂直于
轴的边的最短距离.
(3)
当抛物线在正方形
内部的部分对应的函数值
随
的增大而减小或
随
的增大而增大时,求
的取值范围.
(4)
当抛物线与正方形
的边有且只有两个交点,且这两个交点的纵坐标之和为8时,直接写出
的值.
解答题
困难
3. 已知二次函数的函数值y与自变量x的部分对应值如下表,
x
…
0
1
2
…
y
…
3
4
3
0
…
(1)
求二次函数解析式;
(2)
判断点
_______该函数的图象上(填“在”或“不在”).
解答题
普通
1. 抛物线
上部分点的横坐标x,纵坐标y的对应值如表.下列结论不正确的是( )
x
0
1
y
0
4
6
6
A.
抛物线的开口向下
B.
抛物线与x轴的一个交点坐标为
C.
抛物线的对称轴为直线
D.
函数
的最大值为
单选题
普通
2. 写出一个开口向下且顶点为
的抛物线的表达式
.
填空题
容易
3. 在“探索二次函数
的系数a,b,c与图象的关系”活动中,老师给出了坐标系中的四个点:
. 同学们分别画出了经过这四个点中的三个点的二次函数图象,并得到对应的函数表达式
, 则当
的值最小时,该二次函数图象经过( ).
A.
B,C,D
B.
A,C,D
C.
A,B,D
D.
A,B,C
单选题
普通
1. 已知二次函数
(
为常数)的图象经过点
, 对称轴为直线
.
(1)
求二次函数的表达式;
(2)
若点
向左平移
个单位长度,向上平移
个单位长度后,恰好落在
的图象上,求
的值.
(3)
当
时,二次函数
的最大值与最小值的差为6.25,求
的取值范围.
解答题
困难
2. 如图,抛物线
与x轴交于点
和
, 与y轴交于点C.连接
和
, 点P在抛物线上运动,连接
,
和
.
(1)
求抛物线的解析式,并写出其顶点坐标;
(2)
点P在抛物线上从点A运动到点C的过程中(点P与点A,C不重合),作点P关于x轴的对称点
, 连接
,
, 记
的面积为
, 记
的面积为
, 若满足
, 求
的面积;
(3)
在(2)的条件下,试探究在y轴上是否存在一点Q,使得
?若存在,求出点Q的坐标;若不存在,请说明理由.
解答题
困难
3. 设二次函数
(
,
是常数)的图象与
轴交于
,
两点.
(1)
若
,
两点的坐标分别为
,
, 求函数
的表达式及其图象的对称轴;
(2)
若该二次函数
经过点
,
,
,
,
, 在
,
,
这三个实数中,只有一个是负数,求
的取值范围;
(3)
设一次函数
(
是常数),若函数
的表达式还可以写成
的形式,当函数
的图象经过点
时,求
的值.
解答题
普通
1. “闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:
(
a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.
3.50分钟
B.
4.05分钟
C.
3.75分钟
D.
4.25分钟
单选题
普通
2. 已知二次函数的图象经过点
,顶点为
将该图象向右平移,当它再次经过点
时,所得抛物线的函数表达式为
.
填空题
普通
3. 如图是二次函数
的图像,该函数的最小值是
.
填空题
普通