0
返回首页
1.
有一棵9米高的大树距离地面4米处折断(未完全断开),则大树顶端触地点距大树的距离为
米.
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 一种圆柱形口杯(厚度忽略不计),测得内部底面半径为
, 高为
.吸管如图放进杯里,杯口外面露出部分长为
, 则吸管
的长度为
.
填空题
容易
2. 我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈
尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是
尺
填空题
容易
3.
九章算术
是中国传统数学最重要的著作,在
九章算术
中的勾股卷中有这样一道题:今有竹高一丈,末折抵地,去本三尺
问折者高几何?意思为:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原处竹子
尺远,则原处还有几尺的竹子?这个问题中,如果设原处还有
尺的竹子,则可列方程为
注:
丈
尺
填空题
容易
1. 如图,一根长为
的牙刷置于底面直径为
、高为
的圆柱形水杯中,牙刷露在杯子外面的长度
, 则
的取值范围是
.
填空题
普通
2. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知
EF
=
CD
=4
cm
, 则球的半径为
cm
.
填空题
普通
3. 如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需
米.
填空题
普通
1. 小明为了测量池塘两端C,D的距离,想了如下办法:在平地上寻找到两点A,B,测得
. 请你帮小明求出C,D两点的距离.
解答题
容易
2. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多了1米。当他把绳子的下端拉开5米后,发现下端刚好与接触地面,则旗杆的高度为( )。
A.
11米
B.
12米
C.
13米.
D.
14米
单选题
普通
3. 如图,嘉嘉在
A
时测得一棵
高的树的影长
为
, 若
A
时和
B
时两次日照的光线互相垂直,则
B
时的影长
为( )
A.
B.
C.
D.
单选题
普通
1. 如图,一只小鸟旋停在空中
点,
点到地面的高度
米,
点到地面
点(
,
两点处于同一水平面)的距离
米.
(1)
求出
的长度;
(2)
若小鸟竖直下降到达
点(
点在线段
上),此时小鸟到地面
点的距离与下降的距离相同,求小鸟下降的距离.
综合题
普通
2. 在△ABC中,∠ACB=90°,AC=BC,AB=4,点D是射线AB上的一个动点,将线段CD绕点C逆时针旋转90°得到线段C D,连结B D.
(1)
如图1,若动点D在线段AB上运动时,求证:△ACD≌△CB D.
(2)
如图2,若动点D在射线AB上运动时,连结A D, DD.
①当△ADD为等腰三角形时,求线段AD的长.
②当线段AD=
时,△CDB与△DDB的面积存在3倍的关系.
综合题
困难
3. 如图,学校操场边有一块四边形空地
, 其中
,
,
,
,
为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.
(1)
求需要绿化的空地
的面积;
(2)
为方便师生出入,设计了过点
的小路
, 且
于点
, 试求小路
的长.
解答题
普通
1. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通
2. 我国古代数学名著(孙子算经)有估算方法:“方五,邪(通“斜”)七。见方求邪,七之,五而一。”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为
,依据《孙子算经》的方法,则它的对角线的长是
.
填空题
普通
3. 如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为
.
填空题
普通