0
返回首页
1. 如图,一根长为
的牙刷置于底面直径为
、高为
的圆柱形水杯中,牙刷露在杯子外面的长度
, 则
的取值范围是
.
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 一种圆柱形口杯(厚度忽略不计),测得内部底面半径为
, 高为
.吸管如图放进杯里,杯口外面露出部分长为
, 则吸管
的长度为
.
填空题
容易
2. 小聪准备测量河水的深度,他把一根竹竿插到离岸边
远的水底,竹竿高出水面
, 把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为
.
填空题
容易
3. 我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈
尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是
尺
填空题
容易
1.
有一棵9米高的大树距离地面4米处折断(未完全断开),则大树顶端触地点距大树的距离为
米.
填空题
普通
2. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知
EF
=
CD
=4
cm
, 则球的半径为
cm
.
填空题
普通
3. 如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需
米.
填空题
普通
1. 《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长
尺,则可列方程为( )
A.
B.
C.
D.
单选题
普通
2. 我国明代有一位杰出的数学家程大位在所著的《直指算法统宗》里有一道“荡秋千”的问题:“平地秋千未起,踏板一尺立地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”词写得很优美,其大意是:当秋千静止在地面上时,秋千的踏板离地的距离为一尺,将秋千的踏板往前推两步(每一步为五尺),秋千的踏板与人一样高,这个人的身高为五尺,当然这时秋千的绳索是呈直线状态,问这个秋千的绳索有多长?( )
A.
14尺
B.
14.5尺
C.
15尺
D.
无法计算
单选题
普通
3. 小明为了测量池塘两端C,D的距离,想了如下办法:在平地上寻找到两点A,B,测得
. 请你帮小明求出C,D两点的距离.
解答题
容易
1. 如图①,在
中,
,
是
边上的中线,
是
的中点,过点
作
的平行线交
的延长线于点
, 连接
.
图1 图2
(1)
求证:四边形
是菱形.
(2)
如图②,连接
, 若
,
, 求
的长.
解答题
普通
2. 《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何。大意是:如图,现有一个正方形底面的水池,其底面的边长
AB
=1丈(1丈等于10尺),芦苇
OC
生长在
AB
的中点
O
处,高出水面的部分
CD
=1尺。将芦苇往岸边引,恰好与岸边相接,即
OC
=
OE
。
(1)
求水池的深度
OD
;
(2)
中国古代数学家刘徽在为《九章算术》作注解时,更进一步给出了这类问题的一般解法。他的解法用现代符号语言可以表示为:若已知水池底面边长
AB
=2
a
, 芦苇高出水面的部分
CD
=
n
(
n
<
a
),则水池的深度
OD
(
OD
=
b
)可以通过公式
计算得到。请证明刘徽解法的正确性。
解答题
普通
3. 如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为
海里.
(1)
求观测点B与C点之间的距离;
(2)
有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
综合题
普通
1. 如图,码头A,B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A,B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:
≈1.4,
≈1.7)
解答题
普通
2. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通
3. 我国古代数学名著(孙子算经)有估算方法:“方五,邪(通“斜”)七。见方求邪,七之,五而一。”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为
,依据《孙子算经》的方法,则它的对角线的长是
.
填空题
普通