小明设计的方案如图①:他先在平地上选取一个可以直接到达A、B的点O,然后连接和 , 接着分别延长和并且使 , , 最后连接 , 测出的长即可.
小红的方案如图②:先确定直线 , 过点B作的垂线 , 在上选取一个可以直接到达点A的点D,连接 , 在线段的延长线上找一点C,使 , 测的长即可.
你认为以上两种方案可以吗?请说明理由.
①在河流的一条岸边 点, 选对岸正对的一棵树 ;
②沿河岸直走 20 m 到达树 处,继续前行 20 m 到达 处;
③从 处沿河岸垂直的方向行走, 当到达 树正好被 树遮挡住的 处时停止行走;
④测得 的长为 14 m .
根据此做法,得到河的宽度是 14 m ,请你判断他的做法是否正确,并说明理由.
一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )
项目:测量小山坡的宽度.
活动:小山坡的宽度不能直接测量,可以借助一些工具,比如:皮尺,直角三角板,测角仪
标杆等,各组确定方案后,选择测量工具,画出测量示意图,再进行实地测量,得到具体数据,从而计算出小山坡的宽度.
成果:下面是小聪同学所在小组进行交流展示的部分项目研究内容:
项目
示意图
测量方案
测得数据
测量小山坡
的宽度AB
在小山坡外面的平地上找一点O,立一根标杆,然后再找到点C,D,使OC=OA.
OD =OB
OA=OC=200 m,OB=OD=250 m,CD =360 m
请你帮助小聪组完成下列任务.
( 1 )以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°根据以上作法,某同学有以下3种证明思路:
①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有( )
求作:∠A'O'B',使∠A'O′B'=∠AOB
①如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;
②如图2,画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;
④过点D′画射线O′B',则∠A'O'B'=∠AOB.
根据以上作图步骤,请你证明∠A'O'B′=∠AOB.