0
返回首页
1. 已知抛物线
的焦点为F,P为抛物线上一动点,点
, 当
的周长最小时,点P的坐标为
.
【考点】
抛物线的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
困难
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知抛物线
:
, 圆
:
, 点M的坐标为
, P、Q分别为
、
上的动点,且满足
, 则点P的横坐标的取值范围是
.
填空题
困难
2. 早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xOy,根据图上尺寸, 溢流孔ABC所在抛物线的方程为
, 溢流孔与桥拱交点A的
横坐标
为
.
填空题
普通
3. 已知
、
、
、…、
是抛物线
上不同的点,点
, 若
, 则
填空题
困难
1. 已知一个抛物线形拱桥在一次暴雨前后的水位之差是
, 暴雨后的水面宽为
, 暴雨来临之前的水面宽为
, 暴雨后的水面离桥拱顶的距离为( )
A.
B.
C.
D.
单选题
普通
2. 已知
是抛物线
的焦点,点
,
在该抛物线上且位于
轴的两侧,
(其中
为坐标原点),则
与
面积之和的最小值是( )
A.
2
B.
3
C.
D.
单选题
困难
3. 有一个隧道内设双行线公路,其截面由一长方形和抛物线构成,如图所示.为了保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少为0.7m,若行车道总宽度为7.2m,则车辆通过隧道时的限制高度为( )
A.
3.3m
B.
3.5m
C.
3.8m
D.
4.5m
单选题
普通
1. 如图,在平面直角坐标系
中,
为
轴正半轴上的一个动点.以
为焦点、
为顶点作抛物线
. 设
为第一象限内抛物线
上的一点,
为
轴负半轴上一点,设
, 使得
为拋物线
的切线,且
. 圆
均与直线
切于点
, 且均与
轴相切.
(1)
试求出
之间的关系;
(2)
是否存在点
, 使圆
与
的面积之和取到最小值.若存在,求出点
的坐标;若不存在,请说明理由.
解答题
困难
2. 已知曲线
上的点到点
的距离比到直线
的距离小
为坐标原点.直线
过定点
.
(1)
直线
与曲线
仅有一个公共点,求直线
的方程;
(2)
曲线
与直线
交于
两点,试分别判断直线
的斜率之和、斜率之积是否为定值?并说明理由.
解答题
困难
3. 已知抛物线:
, 焦点为
F
,
为Γ上的一个动点,
l
是Γ在点
A
处的切线,点
P
在
l
上且与点
A
不重合.直线
PF
与Γ交于
B
、
C
两点,且
l
平分直线
AB
和直线
AC
的夹角.
(1)
求
l
的方程(用
,
表示);
(2)
若从点
F
发出的光线经过点
A
反射,证明反射光线平行于
x
轴;
(3)
若点
A
坐标为
, 求点
P
坐标.
解答题
困难
1. 已知抛物线
,焦点为
,点
为抛物线
上的点,且
,则
的横坐标是
;作
轴于
,则
.
填空题
普通
2. 设抛物线
的焦点为F,过点(-2,0)且斜率为
的直线与C交于M,N两点,则
( )
A.
5
B.
6
C.
7
D.
8
单选题
普通
3. 如图,已知点
P
是
y
轴左侧(不含
y
轴)一点,抛物线
C
:
y
2
=4
x
上存在不同的两点
A
,
B
满足
PA
,
PB
的中点均在
C
上.
(Ⅰ)设
AB
中点为
M
, 证明:
PM
垂直于
y
轴;
(Ⅱ)若
P
是半椭圆
x
2
+
=1(
x
<0)上的动点,求△
PAB
面积的取值范围.
解答题
困难