0
返回首页
1. 如图,在平面直角坐标系
中,
为
轴正半轴上的一个动点.以
为焦点、
为顶点作抛物线
. 设
为第一象限内抛物线
上的一点,
为
轴负半轴上一点,设
, 使得
为拋物线
的切线,且
. 圆
均与直线
切于点
, 且均与
轴相切.
(1)
试求出
之间的关系;
(2)
是否存在点
, 使圆
与
的面积之和取到最小值.若存在,求出点
的坐标;若不存在,请说明理由.
【考点】
抛物线的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 如图,已知椭圆
, 双曲线
是
的右顶点,过
作直线
分别交
和
于点
, 过
作直线
分别交
和
于点
, 设
的斜率分别为
.
(1)
若直线
过椭圆
的右焦点,求
的值;
(2)
若
, 求四边形
面积的最小值.
解答题
困难
2. 早在一千年之前,我国已经把溢流孔用于造桥技术,以减轻桥身重量和水流对桥身的冲击.现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔的轮廓线均为抛物线的一部分,且4个溢流孔的轮廓线相同.根据图上尺寸,试分别求出桥拱所在的抛物线方程和溢流孔所在的抛物线方程,及溢流孔与桥拱交点
的位置.
解答题
普通
3. 某抛物线型拱桥的跨度是20米,拱高4米.在建桥时每隔4米需要一支柱支撑,其中最长的支柱是多少米?
解答题
普通
1. 已知抛物线
,焦点为
,点
为抛物线
上的点,且
,则
的横坐标是
;作
轴于
,则
.
填空题
普通
2. 已知抛物线C:x
2
=2py(p>0)的焦点为F,且F与圆M:x
2
+(y+4)
2
=1上点的距离的最小值为4.
(1)
求p;
(2)
若点P在M上,PA,PB是C的两条切线,A,B是切点,求
PAB的最大值.
解答题
困难
3. 已知抛物线方程
,
为焦点,
为抛物线准线上一点,
为线段
与抛物线的交点,定义:
.
(1)
当
时,求
;
(2)
证明:存在常数
,使得
;
(3)
,
,
为抛物线准线上三点,且
,判断
与
的关系.
解答题
普通