0
返回首页
1. 圆锥的轴截面为面积为2的直角三角形,则圆锥的侧面积为( )
A.
B.
C.
D.
【考点】
棱柱/棱锥/棱台的侧面积、表面积及应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为( )
A.
B.
C.
D.
单选题
容易
2. 在△ABC中,已知AB⊥BC,AB=BC=2.现将△ABC绕边AC旋转一周,则所得到的旋转体的表面积是( )
A.
2π
B.
2
π
C.
3
π
D.
4
π
单选题
容易
3. 一个几何体的三视图如图所示,该几何体的表面积是( )
A.
3π
B.
8π
C.
12π
D.
14π
单选题
容易
1. 已知圆柱的上、下底面的中心分别为O
1
, O
2
, 过直线O
1
O
2
的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A.
B.
12π
C.
D.
单选题
普通
2. 若一个圆锥的轴截面是一个腰长为
, 底边上的高为1的等腰三角形,则该圆锥的侧面积为( )
A.
B.
C.
D.
单选题
普通
3. 已知圆锥的母线长为2,侧面积为
, 则过顶点的截面面积的最大值等于( )
A.
B.
C.
3
D.
2
单选题
普通
1. 底面半径为4的圆锥被平行于底面的平面所截,截去一个底面半径为1,母线长为3的圆锥,则所得圆台的侧面积为
.
填空题
普通
2. 如图,某学具可看成将一个底面半径与高都为
的圆柱挖去一个圆锥(此圆锥的顶点是圆柱的下底面圆心、底面是圆柱的上底面)所得到的几何体,则该学具的表面积为
.
填空题
普通
3. 有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为
.
填空题
普通
1. 如图,在直三棱柱
中,底面是边长为
的正三角形,以上、下底面的内切圆为底面,挖去一个圆柱,若圆柱的体积为
, 求:
(1)
剩余部分几何体的体积;
(2)
剩余部分几何体的表面积.
解答题
容易
2. 有一堆规格相同的铁制(铁的密度是
)六角螺丝钉共重
.如图,每个螺丝钉都是由一个正六棱柱和一个圆柱构成,正六棱柱底边长为
, 高为
;圆柱的底面半径为
, 高为
.(
取
)
(1)
求一个六角螺丝钉的表面积;
(2)
问这堆螺丝钉大约有多少个?
解答题
普通
3. 某种“笼具”由上、下两层组成,上层和下层分别是一个圆锥和一个圆柱,其中圆柱与圆锥的底面半径相等,如图所示:圆锥无底面,圆柱无上底面有下底面,内部镂空,已知圆锥的母线长为20cm,圆柱高为30cm,底面的周长为
.
(1)
求这种“笼具”的体积(结果精确到
);
(2)
现要使用一种纱网材料制作这样“笼具”的保护罩(包括底面)50个,该保护罩紧贴包裹“笼具”,纱网材料(按实测面积计算)的造价为每平方米8元,共需多少元?(结果精确到0.1元)
解答题
容易
1. 已知圆柱的上、下底面的中心分别为O
1
, O
2
, 过直线O
1
O
2
的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A.
B.
12π
C.
D.
单选题
普通
2. 某四面体的三视图如图所示,该四面体的表面积为( )
A.
B.
4
C.
D.
2
单选题
普通
3. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).
A.
B.
C.
D.
单选题
容易