0
返回首页
1. 正方体的棱长为a,由它的互不相邻的四个顶点连线所构成的四面体的体积是( )
A.
B.
C.
D.
【考点】
组合几何体的面积、表面积、体积问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 有棱长为6的正四面体SABC,A‘,B’,C‘分别在棱SA,SB,SC上,且SA’=2,SB‘=3,SC’=4,则截面A‘B’C‘将此正四面体分成的两部分体积之比为( )
A.
B.
C.
D.
单选题
容易
2. 如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )
A.
π
B.
2π
C.
4π
D.
8π
单选题
容易
1. 长征五号B运载火箭是专门为中国载人航天工程空间站建设而研制的一款新型运载火箭,是中国近地轨道运载能力最大的新一代运载火箭,长征五号有效载荷整流罩外形是冯·卡门外形(原始卵形)+圆柱形,由两个半罩组成,某学校航天兴趣小组制作整流罩模型,近似一个圆柱和圆锥组成的几何体,如图所示,若圆锥的母线长为6,且圆锥的高与圆柱高的比为
, 则该模型的体积最大值为( )
A.
B.
C.
D.
单选题
普通
2. 故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体
有五个面,其形状与四阿顶相类似.已知底面
为矩形,
∥底面
,
,
与
是全等的等边三角形,则该五面体
的体积为( )
A.
B.
C.
D.
单选题
普通
3. “莱洛三角形”是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的.“莱洛三角形”在实际生活中有非常重要的用途,“转子发动机”的核心零部件为“曲侧面三棱柱”,而该“曲侧面三棱柱”的底面就是“莱洛三角形”.如图是一个底面为莱洛三角形的曲侧面三棱柱,它的侧棱垂直于底面,高为5,且底面任意两顶点之间的距离为4,则其表面积为( )
A.
B.
C.
D.
单选题
普通
1. 如图,在四棱锥
中,
底面
, 底面
是矩形,
,
, 点
在棱
上,且
, 则当
的面积取最小值时,
.
填空题
普通
2. 六氟化硫,化学式为
, 在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构,如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之间的距离为m,则( )
A.
该正八面体结构的表面积为
B.
该正八面体结构的体积为
C.
该正八面体结构的外接球表面积为
D.
该正八面体结构的内切球表面积为
多选题
普通
3. 如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体称作“阿基米德体”.若一个正四面体的棱长为12,则对应的“阿基米德体”的表面积为
.
填空题
普通
1. 如图,在直三棱柱
中,底面是边长为
的正三角形,以上、下底面的内切圆为底面,挖去一个圆柱,若圆柱的体积为
, 求:
(1)
剩余部分几何体的体积;
(2)
剩余部分几何体的表面积.
解答题
容易
2. 已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成的角为
, 过点A作截面ABC、ACD,截去部分后的几何体如图.
(1)
求原来圆锥的侧面积;
(2)
求该几何体的体积.
解答题
容易
3. 在如图的多面体中,已知
为矩形,
和
为全等的等腰梯形,
,
.
(1)
求此多面体的表面积;
(2)
求此多面体的体积.
解答题
普通
1. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是
cm.
填空题
普通
2. 某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm
3
)是( )
A.
B.
C.
3
D.
6
单选题
普通
3. 学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A
1
B
1
C
1
D
1
, 挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA
1
=4cm,3D打印所用原料密度为0.9g/cm
2
, 不考虑打印损耗,制作该模型所需原料的质量为
g.
填空题
普通