0
返回首页
1. 2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)
【考点】
解直角三角形; 解直角三角形的实际应用﹣仰角俯角问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 河南省洛阳市应天门是隋唐洛阳城·宫城——紫微城的正南门,俗称五凤楼.应天门是一座由门楼、朵楼和东西阙楼及其间的廊庑为一体的“凹”字形巨大建筑群,两侧的阙高的高度相同,被称为“天下第一门”.某校数学兴趣小组要测量应天门两侧的阙高的高度,如图,他们在点
处测得应天门两侧的阙的最高点
的仰角为
, 再往应天门两侧阙高方向前进
至点
处,测得应天门两侧阙的最高点
的仰角为
, 根据这个兴趣小组测得的数据,计算应天门两侧阙高
的高度.(结果精确到
, 参考数据:
,
,
)
计算题
容易
2. 如图,无人机在塔树上方
处悬停,测得塔顶
的俯角为
, 树高
为
米,无人机竖直高度
为
米,且
点到塔底
的距离比到树底
的距离多
米,求塔高
的值.(参考数据:
)
解答题
容易
3. 如图,建筑物AB垂直于地面,测角机器人先在C处测得A的仰角为
, 再向着B前进6米到D处,测得A的仰角为
. 求建筑物AB的高度(结果精确到米).(参考数据:
,
,
)
解答题
容易
1. 如图,某地政府为解决当地农户网络销售农产品物流不畅问题,计划打通一条东西方向的隧道AB,无人机从点A的正上方点C,沿正东方向以6m/s的速度飞行15s到达点D,此时测得点A的俯角为60°,然后以同样的速度沿正东方向又飞行60s到达点E,测得点B的俯角为37°.
(1)
求无人机的高度
AC
;(结果保留根号)
(2)
求隧道
AB
的长.(结果精确到1
m
, 参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73)
解答题
普通
2. 如图,某数学活动小组用高度为1.5米的测角仪
BC
, 对垂直于地面
CD
的建筑物
AD
的高度进行测量,
BC
⊥
CD
于点
C
. 在
B
处测得
A
的仰角∠
ABE
=45°,然后将测角仪向建筑物方向水平移动6米至
FG
处,
FG
⊥
CD
于点
G
, 测得
A
的仰角∠
AFE
=58°,
BF
的延长线交
AD
于点
E
, 求建筑物
AD
的高度(结果保留小数点后一位).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
解答题
普通
3. 综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的
D
处,测得操控者
A
的俯角为
, 测得楼
楼顶
C
处的俯角为
, 又经过人工测量得到操控者
A
和大楼
之间的水平距离是80米,则楼
的高度是多少米?(点
A
,
B
,
C
,
D
都在同一平面内,参考数据:
)
解答题
普通
1. 在
中,
,
,
, 则
的长约为
.(结果精确到0.1.参考数据:
,
,
)
填空题
容易
2. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉。在一次综合实践活动中,某数学小组用无人机测量黄鹤楼
的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m的
C
处,测得黄鹤楼顶端
A
的俯角为
, 底端
B
的俯角为
, 则测得黄鹤楼的高度是
m.(参考数据:
)
填空题
普通
3. 在
中,
, 有一个锐角为
,
, 若点
在
直线
上(不与点
,
重合),且
, 则
的长为
.
填空题
普通
1. 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)
求∠BPQ的度数;
(2)
求该电线杆PQ的高度.(结果保留根号)
综合题
普通
2. 衡阳市的东洲湘江大桥实景图如图①,现要测量桥墩
的高度,图②是设计的测量示意图.已知桥墩底端点
到河岸的参照点
的距离
米,斜坡
的长为40米,斜坡
与水平面
的夹角
, 坡顶平台
,
米,在
处测得桥墩顶端点
的仰角
.
(1)
求平台
到水平面
的垂直距离;
(2)
求桥墩
的高度(结果精确到
).
(参考数据:
,
,
,
)
综合题
普通
3. 重庆南川金佛山因其优美的自然风光、独特的地形地貌吸引了众多游客.甲乙两名游客选择两种不同的方式游览景区,如图,甲从山脚
处乘坐缆车到达景点
处,同时乙开车从山脚
处前行
到达
处,此时遇一斜坡,坡度
, 沿着斜坡前行
到达停车场
处,停车后,再跑步到达景点
处(汽车行驶在平路和上坡的速度相等,停车时间忽略不计).甲在
处观测景点
的仰角为
, 乙在
处观测景点
的仰角为
.
(1)
求景点
的高度
;(结果精确到
)
(2)
甲乘坐缆车的速度为
, 乙的车速为
, 乙的跑步速度为
, 谁先到达景点
?
(参考数据:
,
,
,
,
)
解答题
普通
1. 小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处.看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7.sin65°≈0.9.cos65°≈0.4,tan65°≈2.1)( )
A.
3.2米
B.
3.9米
C.
4.7米
D.
5.4米
单选题
普通
2. 如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°。求这两座建筑物AB,CD的高度。(结果保留小数点后一位
)
解答题
普通
3. 如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为
m(结果保留根号).
填空题
普通