0
返回首页
1. 综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的
D
处,测得操控者
A
的俯角为
, 测得楼
楼顶
C
处的俯角为
, 又经过人工测量得到操控者
A
和大楼
之间的水平距离是80米,则楼
的高度是多少米?(点
A
,
B
,
C
,
D
都在同一平面内,参考数据:
)
【考点】
解直角三角形的实际应用﹣仰角俯角问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 河南省洛阳市应天门是隋唐洛阳城·宫城——紫微城的正南门,俗称五凤楼.应天门是一座由门楼、朵楼和东西阙楼及其间的廊庑为一体的“凹”字形巨大建筑群,两侧的阙高的高度相同,被称为“天下第一门”.某校数学兴趣小组要测量应天门两侧的阙高的高度,如图,他们在点
处测得应天门两侧的阙的最高点
的仰角为
, 再往应天门两侧阙高方向前进
至点
处,测得应天门两侧阙的最高点
的仰角为
, 根据这个兴趣小组测得的数据,计算应天门两侧阙高
的高度.(结果精确到
, 参考数据:
,
,
)
计算题
容易
2. 如图,无人机在塔树上方
处悬停,测得塔顶
的俯角为
, 树高
为
米,无人机竖直高度
为
米,且
点到塔底
的距离比到树底
的距离多
米,求塔高
的值.(参考数据:
)
解答题
容易
3. 如图,建筑物AB垂直于地面,测角机器人先在C处测得A的仰角为
, 再向着B前进6米到D处,测得A的仰角为
. 求建筑物AB的高度(结果精确到米).(参考数据:
,
,
)
解答题
容易
1. 如图,某地政府为解决当地农户网络销售农产品物流不畅问题,计划打通一条东西方向的隧道AB,无人机从点A的正上方点C,沿正东方向以6m/s的速度飞行15s到达点D,此时测得点A的俯角为60°,然后以同样的速度沿正东方向又飞行60s到达点E,测得点B的俯角为37°.
(1)
求无人机的高度
AC
;(结果保留根号)
(2)
求隧道
AB
的长.(结果精确到1
m
, 参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.73)
解答题
普通
2. 如图,某种摄像头识别到最远点
的俯角
是
, 识别到最近点
的俯角
是
, 该摄像头安装在距地面5m的点
处,求最远点与最近点之间的距离
(结果取整数,参考数据:
,
,
).
解答题
普通
3. 如图,某数学活动小组用高度为1.5米的测角仪
BC
, 对垂直于地面
CD
的建筑物
AD
的高度进行测量,
BC
⊥
CD
于点
C
. 在
B
处测得
A
的仰角∠
ABE
=45°,然后将测角仪向建筑物方向水平移动6米至
FG
处,
FG
⊥
CD
于点
G
, 测得
A
的仰角∠
AFE
=58°,
BF
的延长线交
AD
于点
E
, 求建筑物
AD
的高度(结果保留小数点后一位).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
解答题
普通
1. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉。在一次综合实践活动中,某数学小组用无人机测量黄鹤楼
的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m的
C
处,测得黄鹤楼顶端
A
的俯角为
, 底端
B
的俯角为
, 则测得黄鹤楼的高度是
m.(参考数据:
)
填空题
普通
2. 在数学课外实践活动中,某小组测量一栋楼房
的高度
如图
, 他们在
处仰望楼顶,测得仰角为
, 再往楼的方向前进
米至
处,测得仰角为
, 那么这栋楼的高度为
人的身高忽略不计
( )
A.
米
B.
米
C.
米
D.
米
单选题
普通
3. 综合实践课上,航模小组用无人机测量古树
的高度.如图,点
C
处与古树底部
A
处在同一水平面上,且
米,无人机从
C
处竖直上升到达
D
处,测得古树顶部
B
的俯角为
, 古树底部
A
的俯角为
, 则古树
AB
的高度约为
米(结果精确到0.1米;参考数据:
,
,
).
填空题
普通
1. 在数学活动课上,老师带领学生去测量某建筑物
的高度.如图,在C处用高1米的测倾器测得建筑物顶部A的仰角为
, 向建筑物的方向前进20米到达D处,在D处测得建筑物顶部A的仰角为
, 此时与建筑物
的距离(
的长)是12米,经计算得知建筑物
的高约为17米.
(1)
求线段
的长度和
的值;
(2)
求
的值.
综合题
普通
2. 如图,甲在楼房上的点N处测得斜坡l的坡底点A的俯角为
, 乙在楼房顶端点M处测得斜坡l上的点B处的俯角为
, 点B到地面m的距离为
.
(1)
求斜坡l的坡度;
(2)
求点M与点N的高度差.
综合题
普通
3. 山城重庆,虽然山多坡多,但是很多重庆人都喜欢爬山望远.“会当凌绝顶,一览众山小”,能让人心境开阔.小育、小才和小庆三位同学相约周末爬山,因小庆临时有事,要晚一点来,小育和小才先在山脚
处集合,此时测得山顶
的仰角是
, 两人边走边聊,沿着倾斜角为
的斜坡前进
到达凉亭
, 在凉亭
测得山顶
的仰角为
. (参考数据:
,
,
)
(1)
求山
的高度(结果保留根号).
(2)
随着山路越来越陡,小育和小才两人的速度也越来越慢.若从凉亭
出发的后一段,两人的行进速度为
千米/时.当他们从凉亭
出发的同时,小庆在山脚
处乘坐观光缆车到山顶
与小育小才会合.已知观光缆车的速度为
千米/时,是小育小才还是小庆先到达山顶
?请通过计算说明.
综合题
普通
1. 如图,从热气球A看一栋楼底部C的俯角是( )
A.
B.
C.
D.
单选题
容易
2. 小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:
≈1.414,
≈1.732)
解答题
普通
3. 如图,两座建筑物
与
,其中
的高为120米,从
的顶点
测得
顶部
的仰角为30°,测得其底部
的俯角为45°,求这两座建筑物的地面距离
为多少米?(结果保留根号)
解答题
普通