0
返回首页
1. 如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
【考点】
垂径定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)
解答题
普通
1. 如图,
的弦
垂直平分半径
, 垂足为
, 若
, 则
的长为( )
A.
B.
C.
D.
单选题
容易
2. 如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为( )
A.
B.
C.
D.
单选题
普通
3. 如图,
是
的直径,弦
于E,若
,
, 则
的长是( )
A.
12
B.
16
C.
D.
单选题
容易
1. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)
求证:CD为⊙O的切线;
(2)
若DC+DA=6,⊙O的直径为10,求AB的长度.
综合题
困难
2. 如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.
(1)
判断BD与⊙O的位置关系,并说明理由;
(2)
若CD=15,BE=10,tanA=
,求⊙O的直径.
综合题
普通
3. 如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.
(1)
求证:△ACD∽△CFD;
(2)
若∠CDA=∠GCA,求证:CG为⊙O的切线;
(3)
若sin∠CAD=
,求tan∠CDA的值.
综合题
普通
1. 如图,将
沿弦
折叠,
恰好经过圆心
,若
的半径为3,则
的长为( )
A.
B.
C.
D.
单选题
普通
2. 已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A.
B.
4
C.
D.
5
单选题
普通
3. 如图,
是
的外接圆,
交
于点E,垂足为点D,
,
的延长线交于点F.若
,
,则
的长是( )
A.
10
B.
8
C.
6
D.
4
单选题
普通