0
返回首页
1. 一块边长为
的正方形草坪,经过重新规划,东西方向需要加长
, 南北方向需要缩短
. 规划后的草坪面积是多少?
【考点】
平方差公式的几何背景;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. a,b,c是三个连续的正整数,以b为边长作正方形,分别以c,a为长和宽作长方形,哪个图形的面积大?大多少?
解答题
容易
1. 如图,边长为
的大正方形中有一个边长为
的小正方形,把图①中的阴影部分拼成一个长方形(如图②所示)
(1)
上述操作能验证的等式是
.(请选择正确的一个)
.
;
.
;
.
(2)
请应用(1)中的等式完成下列各题:
①已知
,
则
▲
;
②计算:
.
③计算:
.
解答题
困难
2. 如图,将两个长方形用不同方式拼成图
和图
两个图形.
(1)
若图
中的阴影部分面积为
, 则图
中的阴影部分面积为
用含字母
,
的代数式表示
;
(2)
由
你可以得到的等式是
;
(3)
根据你所得到的等式解决下面的问题:
若
,
, 则
_
▲
_
;
计算:
.
解方程:
.
解答题
普通
3. 如图所示,有一个狡猾的地主,把一块边长为a米的正方形土地租给马老汉栽种.过了一年,他对马老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”马老汉一听,觉得好像没吃亏,就答应了.同学们,你们觉得马老汉有没有吃亏?请说明理由.
解答题
普通
1. 观察图,用等式表示图中图形面积的运算为( )
A.
B.
C.
D.
单选题
容易
2. 如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )
A.
B.
C.
D.
单选题
容易
3. 从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A.
B.
C.
D.
单选题
容易
1. 如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.
(1)
在图2中的阴影部分的面积
可表示为__________;(写成多项式乘法的形式)在图3中的阴影部分的面积
可表示为____________;(写成两数平方差的形式)
(2)
比较图2与图3的阴影部分面积,可以得到的等式是____________;
A.
B.
C.
(3)
请利用所得等式解决下面的问题:计算
的值,并直接写出该值的个位数字是多少.
解答题
普通
2. 如图1是一张边长为a的正方形纸片,在它的一角剪去一个边长为b的小正方形,然后将图1剩余部分(阴影部分)剪拼成如图2的一个大长方形(阴影部分).
(1)
将图1阴影部分的面积记为
, 图2的面积记为
, 若用含a、b的代数式表示
和
, 则
,
;
(2)
请你判断
与
之间的大小关系:
(填“
”、“
”或“
”);
(3)
利用(2)中的结论,求
的值.
解答题
普通
3. 如图,某小区有一块长为
米,宽为
米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.
(1)
用含有a、b的式子表示绿化的总面积(结果写成最简形式);
(2)
当
,
, 求绿化的总面积;
(3)
在(2)的条件下,开发商找来甲、乙两绿化队完成此项绿化任务.已知甲队每小时可绿化6平方米,乙队每小时绿化3平方米,若要求甲队的工作时间不超过乙队的工作时间,则甲队至多工作多少小时?
综合题
普通
1. 如图
,将边长为
的大正方形剪去一个边长为
的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图
所示长方形.这两个图能解释下列哪个等式( )
A.
B.
C.
D.
单选题
普通
2. 如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S
1
, S
2
, 则
可化简为
.
填空题
普通
3. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
A.
(a﹣b)
2
=a
2
﹣2ab+b
2
B.
a(a﹣b)=a
2
﹣ab
C.
(a﹣b)
2
=a
2
﹣b
2
D.
a
2
﹣b
2
=(a+b)(a﹣b)
单选题
普通