0
返回首页
1. 已知椭圆
:
的离心率为
, 过点
的直线
交
于点
,
, 且当
轴时,
.
(1)
求
的方程
(2)
记
的左焦点为
, 若过
,
,
三点的圆的圆心恰好在
轴上,求直线
的斜率.
【考点】
直线与圆锥曲线的综合问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 已知椭圆
, 右焦点为
, 过点
的直线
交
于
两点.
(1)
若直线
的倾斜角为
, 求
;
(2)
记线段
的垂直平分线交直线
于点
, 当
最大时,求直线
的方程.
解答题
困难
2. 已知椭圆
:
的左右焦点分别为
,
, 离心率为
, 过抛物线
:
焦点的直线交抛物线于
M
,
N
两点,
的最小值为4.连接
,
并延长分别交
于
A
,
B
两点,且点
A
与点
M
, 点
B
与点
N
均不在同一象限,
与
的面积分别记为
,
.
(1)
求
和
的方程;
(2)
记
, 求
的最小值.
解答题
困难
3. 已知抛物线
, 圆
,
P
是抛物线
上一点(异于原点).
(1)
若
Q
为圆
上一动点,求
的最小值;
(2)
过点
P
作圆
的两条切线,分别交抛物线
于
A
,
B
两点,切点分别为
E
,
F
, 若四边形
ABFE
为梯形,求点
P
的坐标.
解答题
困难
1. 已知椭圆C:
的离心率为
,且过点A(2,1).
(1)
求C的方程:
(2)
点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
解答题
普通
2. 如图,已知椭圆
.设A,B是椭圆上异于
的两点,且点
在线段
上,直线
分别交直线
于C,D两点.
(Ⅰ)求点P到椭圆上点的距离的最大值;
(Ⅱ)求
的最小值.
解答题
普通
3. 设抛物线
的焦点为F,点
,过
的直线交C于M,N两点.当直线MD垂直于x轴时,
.
(1)
求C的方程:
(2)
设直线
与C的另一个交点分别为A,B,记直线
的倾斜角分别为
.当
取得最大值时,求直线AB的方程.
解答题
困难