3.
“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E120%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%98%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
内部有一点
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
, 连接
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
绕点
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
顺时针旋转
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E60%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%98%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 得到
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 连接
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的长即为所求,此时与三个顶点连线恰好三等分费马点
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
的周角.同时小组成员研究教材发现:已知对任意平面向量
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfenced+close%3D%22%29%22+open%3D%22%28%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 把
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
绕其起点沿逆时针方向旋转
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3C%2Fmath%3E)
角得到向量
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfenced+close%3D%22%29%22+open%3D%22%28%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmtext%3Ecos%3C%2Fmtext%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmtext%3Esin%3C%2Fmtext%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmtext%3Esin%3C%2Fmtext%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmtext%3Ecos%3C%2Fmtext%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
.
![](http://tikupic.21cnjy.com/ct20241o/5e/1b/5e1bf34cc0680a29b41d2d7ca01b41c6.png)