天翼的做法:添加条件.
证明: , , .(两组角对应相等的两个三角形相似)
徍琛的做法:添加条件.
证明: , ,
.(两组对应边成比例及一组对应角相等的两个三角形相似)
判定1
平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
判定2
三边对应的两个三角形相似.
判定3
两边对应成比例且夹角的两个三角形相似.
判定4
两角分别的两个三角形相似.
【提出问题】徐老师提出了一个问题:如图1,在矩形ABCD中, , , P为AD边上的一动点,以PC为边向右作等边 , 连接BE , 如何求BE的最小值?
【探究发现】小亮发现:如图4所示,以BC为边向下构造一个等边 , 便可得到 , 进而将BE的最小值转化为PM的最小值的问题.
小刚受此启发,举一反三,提出新问题:如图2,若将图1当中构造的等边三角形,改为以PC为边向右构造正方形PCFG , 在运动过程中,求出BG的最小值.
在一次综合实践活动课上,王老师给每位同学各发了一张正方形纸片,请同学们思考如何仅通过折纸的方法来确定正方形一边上的一个三等分点.
【操作探究】
“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:
第步:如图所示,先将正方形纸片对折,使点与点重合,然后展开铺平,折痕为;
第步:将边沿翻折到的位置;
第步:延长于点 , 则点边的三等分点.
证明过程如下:连接 ,
正方形折叠,
▲ ,
又 ,
,
.
由题意可知的中点,设个单位 , 则 ,
在中,可列方程: ▲ , 方程不要求化简
解得: ▲ , 即边的三等分点.
“破浪”小组是这样操作的:
第步:再将正方形纸片对折,使点与点重合,再展开铺平,折痕为 , 沿翻折得折痕于点;
第步:过点折叠正方形纸片 , 使折痕 .
【过程思考】
:,:,:;
如图 , 在菱形中,上的一个三等分点,记点关于的对称点为 , 射线与菱形的边交于点 , 请直接写出的长.