证明(已知)
(已知),
∴
即
在和中,
∵
∴( )
(1)CE= ;当点P在BC上时,BP= (用含有t的代数式表示);
(2)在整个运动过程中,点P运动了 秒;
(3)当t= 秒时,△ABP和△DCE全等;
(4)在整个运动过程中,求△ABP的面积.
求证:
求证: .
如图1,在△ABC中,∠ACB=90°,AC=BC=6,P为AC上一点,当AP的长为时,△ABP与△CBP为偏等积三角形.
如图2,△ABD与△ACD为偏等积三角形,AB=2,AC=4,且线段AD的长度为正整数,过点C作CE∥AB,交AD的延长线于点E,求AE的长.
如图3,已知△ABC和△ADE为两个等腰直角三角形,其中AC=AB,AD=AE,∠CAB=∠DAE=90°,F为CD的中点.请根据上述条件,回答以下问题:
①∠CAD+∠BAE的度数为 °;
②试探究线段AF与BE的数量关系,并写出解答过程.