0
返回首页
1. 已知等差数列
的前
n
项和为
, 若
, 则( )
A.
B.
C.
的最小值为
D.
的最小值为
【考点】
等差数列的前n项和;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
多选题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 等差数列
的前
项和为
,公差
.若
,则以下结论一定正确的是( )
A.
B.
的最小值为
C.
D.
存在最大值
多选题
普通
2. 已知数列
是等差数列,前n项和为
且
下列结论中正确的是( )
A.
最小
B.
C.
D.
多选题
普通
1. 随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.
基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通
基站超70万个,未来将进一步完善基础网络体系,稳步推进
网络建设,实现主要城区及部分重点乡镇
网络覆盖.2021年1月计划新建设5万个
基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个
基站时要到( )
A.
2022年12月
B.
2023年2月
C.
2023年4月
D.
2023年6月
单选题
普通
2. 设等差数列
的前
项和为
, 若
,
, 则
( )
A.
B.
C.
D.
单选题
容易
3. 已知等差数列
的前
项和为-196,则
的值为( )
A.
13
B.
14
C.
15
D.
16
单选题
容易
1. 已知数列
满足
, 且
是
与
的等比中项.
(1)
若
, 求
的值;
(2)
若
, 设数列
的前
项和分别为
.
(ⅰ)求数列
的通项公式;
(ⅱ)求
.
解答题
普通
2. 已知
是等差数列
的前
项和,且
.
(1)
求
;
(2)
若
, 记数列
前
项和为
解答题
普通
3. 给定整数
, 由
元实数集合
定义其相伴数集
, 如果
, 则称集合S为一个
元规范数集,并定义S的范数
为其中所有元素绝对值之和.
(1)
判断
、
哪个是规范数集,并说明理由;
(2)
任取一个
元规范数集S,记
、
分别为其中最小数与最大数,求证:
;
(3)
当
遍历所有2023元规范数集时,求范数
的最小值.
注:
、
分别表示数集
中的最小数与最大数.
解答题
困难
1. 已知等差数列
的首项
,公差
.记
的前n项和为
.
(Ⅰ)若
,求
;
(Ⅱ)若对于每个
,存在实数
,使
成等比数列,求d的取值范围.
解答题
普通
2. 若数列
通项公式为
,记前n项和为
,则
;
.
填空题
容易
3. 数列
是递增的整数数列,且
,
,则
的最大值为( )
A.
9
B.
10
C.
11
D.
12
单选题
困难