0
返回首页
1. 记正项等比数列
的前n项和为
, 则下列数列为等比数列的有( )
A.
B.
C.
D.
【考点】
等比数列概念与表示;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
多选题
普通
变式训练
拓展培优
真题演练
换一批
1. 已知数列
:0,2,0,2,0,现按规则
f
:每个0都变为“2,0,2”,每个2都变为“0,2,0”对该数列进行变换,得到一个新数列,记数列
,
, 则数列
的项数为
,设
的所有项的和为
, 则
.
填空题
困难
2. 已知
是等比数列,下列数列一定是等比数列的是( )
A.
(k∈R)
B.
C.
D.
单选题
普通
3. 已知等比数列
的公比为q,前n项和为
. 若
,
, 则
( )
A.
3
B.
2
C.
-3
D.
-2
单选题
普通
1. 已知数列
满足:
.
(1)
求数列
的通项公式;
(2)
记数列
的前
项和为
, 求实数
的值,使得数列
是等差数列;
(3)
对于数列
, 规定
为数列
的一阶差分数列,其中
. 如果
的一阶差分数列满足
, 则称
是“绝对差异数列”.判断数列
是否为“绝对差异数列”并给出证明.
解答题
困难
2. 某学校食堂有
两家餐厅,张同学第1天选择
餐厅用餐的概率为
. 从第2天起,如果前一天选择
餐厅用餐,那么次日选择
餐厅用餐的概率为
;如果前一天选择
餐厅用餐,那么次日选择
餐厅用餐的概率为
. 设他第
天选择
餐厅用餐的概率为
.
(1)
求
的值及
关于
的表达式;
(2)
证明数列
是等比数列,并求出
的通项公式.
解答题
普通
3. 某企业2022年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到50%,每年年底扣除下一年的消费基金
千万元后,剩余资金投入再生产.设从2022年的年底起,每年年底企业扣除消费基金后的剩余资金依次为
,
,
, …
(1)
写出
,
,
, 并证明数列
是等比数列;
(2)
至少到哪一年的年底,企业的剩余资金会超过21千万元?
解答题
普通
1. 通过以下操作得到一系列数列:第1次,在2,3之间插入2与3的积6,得到数列2,6,3;第2次,在2,6,3每两个相邻数之间插入它们的积,得到数列2,12,6,18,3;类似地,第3次操作后,得到数列:2,24,12,72,6,108,18,54,3.按上述这样操作11次后,得到的数列记为
,则
的值是()
A.
6
B.
12
C.
18
D.
108
单选题
困难
2. 已知数列
满足
.记数列
的前
n
项和为
,则( )
A.
B.
C.
D.
单选题
普通
3. 已知
,函数
.若
成等比数列,则平面上点
的轨迹是( )
A.
直线和圆
B.
直线和椭圆
C.
直线和双曲线
D.
直线和抛物线
单选题
普通