①若对任意的正整数均有 , 则为和谐数列;
②若等差数列是和谐数列,则一定存在最小值;
③若的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.
以上3个命题中真命题的个数有( )个
,
, , ,
, , , , , , ,
…
已知各行的第一个数 , , , , …构成数列 , 且的前项和满足(且),从第三行起,每一行中的数按从左到右的顺序均构成等差数列,且公差为同一个常数.若 , 则第6行的所有项的和为.
(ⅰ)求;
(ⅱ)求(用数字作答).
(Ⅰ)判断 是否为5-连续可表数列?是否为 连续可表数列?说明理由;
(Ⅱ)若 为 连续可表数列,求证: 的最小值为4;
(Ⅲ)若 为 连续可表数列, ,求证: .
① 的第2项小于3; ② 为等比数列;
③ 为递减数列; ④ 中存在小于 的项。
其中所有正确结论的序号是.