0
返回首页
1. 从甲袋中摸出一个红球的概率是
,从乙袋中摸出一个红球的概率是
,从两袋各摸出一个球,下列结论正确的是( )
A.
2个球都是红球的概率为
B.
2个球中恰有1个红球的概率为
C.
至少有1个红球的概率为
D.
2个球不都是红球的概率为
【考点】
相互独立事件的概率乘法公式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
多选题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件
为“两个四面体朝下一面的数字之和为奇数”,事件
为“甲四面体朝下一面的数字为奇数”,事件
为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )
A.
B.
C.
D.
多选题
普通
1. 在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为
, 收到0的概率为
;发送1时,收到0的概率为
, 收到1的概率为
. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)则下列说法错误的是( )
A.
采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.
采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.
当
时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
D.
采用三次传输方案,若发送1,则译码为1的概率为
单选题
普通
2. 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是
中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )
A.
B.
C.
D.
单选题
普通
3. 一次知识竞赛中,共有
个题,参赛人每次从中抽出一个题回答(抽后不放回).已知参赛人甲
题答对的概率为
题答对的概率为
题答对的概率均为
, 则甲前3个题全答对的概率为
.
填空题
容易
1. 某红茶批发地只经营甲、乙、丙三种品牌的红茶,且甲、乙、丙三种品牌的红茶优质率分别为
.
(1)
若该红茶批发地甲、乙、丙三种品牌的红茶市场占有量的比例为
, 小张到该批发地任意购买一盒红茶,求他买到的红茶是优质品的概率;
(2)
若小张到该批发地甲、乙、丙三种品牌店各任意买一盒红茶,求他恰好买到两盒优质红茶的概率.
解答题
普通
2. 为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,教育部启动了“强基计划”的招生改革工作.某校强基招生面试有两道题,两道题都答对者才能通过强基招生面试.假设两题作答相互独立,现有甲、乙、丙三名学生通过考核进入面试环节,他们答对第一题的概率分别是
, 答对第二题的概率分别是
.
(1)
求甲考生通过某校强基招生面试的概率;
(2)
求甲、乙两位考生中有且只有一位考生通过强基招生面试的概率;
(3)
求甲、乙、丙三人中至少有一人通过强基招生面试的概率.
解答题
普通
3. 在一个盒子中有2个白球,3个红球,甲、乙两人轮流从盒子中随机地取球,甲先取,乙后取,然后甲再取,……,每次取1个,取后不放回,直到2个白球都被取出来后就停止取球.
(1)
求2个白球都被乙取出的概率;
(2)
求2个白球都被甲取出的概率;
(3)
求将球全部取出才停止取球的概率
解答题
困难
1. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为
,且
.记该棋手连胜两盘的概率为p,则( )
A.
p与该棋手和甲、乙、丙的此赛次序无关
B.
该棋手在第二盘与甲比赛,p最大
C.
该棋手在第二盘与乙比赛,p最大
D.
该棋手在第二盘与丙比赛,p最大
单选题
普通
2. 甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为
和
,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为
,3次活动中,甲至少获胜2次的概率为
.
填空题
普通
3. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.
甲与丙相互独立
B.
甲与丁相互独立
C.
乙与丙相互独立
D.
丙与丁相互独立
单选题
普通