0
返回首页
1. 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S
△HDG
:S
△HBG
=tan∠DAG ⑤线段DH的最小值是2
﹣2.
A.
2
B.
3
C.
4
D.
5
【考点】
全等三角形的判定与性质; 正方形的性质; 相似三角形的判定与性质; 解直角三角形;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于 ( )
A.
1
B.
C.
D.
单选题
容易
2. 如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )
A.
4cm
B.
6cm
C.
8cm
D.
10cm
单选题
容易
3. 若一个正方形的面积是28,则它的边长为( )
A.
B.
C.
D.
单选题
容易
1. 如图四边形
与
是并列放在一起的两个正方形,
是
与
的交点.如果正方形
的面积是9,
, 则
的面积为
A.
1
B.
C.
4
D.
单选题
普通
2. 如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A.
B.
2
C.
2
D.
单选题
普通
3. 如图 24-15,
的圆心
与正方形的中心重合, 已知
的半径和正方形的边长都为 4 , 则圆上任意一点到正方形边上任意一点距离的最小值为( )
A.
B.
2
C.
D.
单选题
普通
1. 如图,正方形的顶点A,C分别在y轴和x轴上,边BC的中点F在y轴上,若反比例函数
的图象恰好经过CD的中点E,则OA的长为
.
填空题
困难
2. 如图,已知点
B
,
C
,
D
,
E
在一条直线上,
AB
∥
FC
,
AB
=
FC
,
BC
=
DE
. 求证:
AD
∥
FE
.
证明题
普通
3. 如图,正方形
的对角线相交于点O,点O又是另一个正方形
的一个顶点.若两个正方形的边长均为2,则图中阴影部分图形的面积为
.
填空题
容易
1. 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.
(1)
如图1,求证:∠CBE=∠DHG;
(2)
如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;
(3)
如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为
,求线段BR的长.
综合题
困难
2. 如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.
(1)
①求证:AP=CQ;②求证:PA
2
=AF•AD;
(2)
若AP:PC=1:3,求tan∠CBQ.
综合题
困难
3. 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在AB,AC边上,此时BD=CF,BD⊥CF成立.
(1)
当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)
当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;
(3)
在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=
时,求线段CM的长.
综合题
困难
1. 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S
△
HDG
:S
△
HBG
=tan∠DAG ⑤线段DH的最小值是2
﹣2.
A.
2
B.
3
C.
4
D.
5
单选题
困难