对称性: ①矩形是一个轴对称图形, 它至少有条对称轴.
②矩形是中心对称图形, 它的对称中心是的交点.
定理: ①矩形的四个角都是直角.
②矩形的对角线互相平分且相等.(3)判定:
①定义法.
②有三个角是直角的四边形是矩形.
③对角线相等的平行四边形是矩形.
④对角线相等且互相平分的四边形是矩形.
(4)拓展: ①矩形的两条对角线把矩形分成四个面积相等的等腰三角形.
②矩形的面积等于两邻边的积.
※5.如图,在矩形ABCD中, , , P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F求的值.
如图1,连接PO , 利用与的面积之和是矩形面积的 , 可求出的值,
请你写出求解过程.
如图,在矩形ABCD中,点M , N分别在边AD , BC上,将矩形ABCD沿直线MN折叠,使点D恰好与点B重合,点C落在点C处.
①如图2,P为线段MN上一动点(不与点M , N重合),过点P分别作直线BM , BC的垂线,垂足分别为E和F , 以PE , PF为邻边作平行四边形PEGF , 若 , , 求平行四边形PEGF的周长.
②如图3,当点P在线段MN的延长线上运动时,若 , . 请写出GF与GE之间的数量关系:_▲_(用含m , n的式子)