0
返回首页
1. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为( )
A.
(2a
2
+5a)cm
2
B.
(3a+15)cm
2
C.
(6a+9)cm
2
D.
(6a+15)cm
2
【考点】
平方差公式的几何背景;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
A.
(a-b)
2
=a
2
-2ab+b
2
B.
a(a-b)=a
2
-ab
C.
(a-b)
2
=a
2
-b
2
D.
a
2
-b
2
=(a+b)(a-b)
单选题
容易
1. 如图1所示,在边长为
的正方形中挖掉一个边长为
的小正方形
, 把剩下的部分前拼成一个矩形,如图2所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( )
A.
B.
C.
D.
单选题
普通
2. 如图,在边长为
的正方形中挖掉一个边长为
的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是( )
A.
B.
C.
D.
单选题
普通
3. 如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余分剪拼成一个长方形(如图②),则上述操作所能验证的公式是( )
A.
B.
C.
D.
单选题
普通
1. 如图1,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图2,请根据图形的面积写出一个含字母a,b的等式
.
填空题
容易
2. 如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是
.
填空题
普通
3. 如图,从一个边长为a的正方形的一角上剪去一个边长为b(a>b)的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是
(用含a,b的等式表示).
填空题
普通
1. 从边长为
的正方形中剪掉一个边长为
的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)
上述操作能验证的等式是______________.
A.
B.
C.
(2)
应用所得的公式计算:
;
(3)
应用所得的公式计算:
.
解答题
普通
2. 如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.
(1)
在图2中的阴影部分的面积
可表示为__________;(写成多项式乘法的形式)在图3中的阴影部分的面积
可表示为____________;(写成两数平方差的形式)
(2)
比较图2与图3的阴影部分面积,可以得到的等式是____________;
A.
B.
C.
(3)
请利用所得等式解决下面的问题:计算
的值,并直接写出该值的个位数字是多少.
解答题
普通
3. 从边长为
的正方形剪掉一个边长为
的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)
上述操作能验证的等式是_____(请选择正确的一个)
A.
, B.
, C.
.
(2)
若
, 求
的值;
(3)
计算:
.
解答题
普通
1. 如图
,将边长为
的大正方形剪去一个边长为
的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图
所示长方形.这两个图能解释下列哪个等式( )
A.
B.
C.
D.
单选题
普通
2. 如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S
1
, S
2
, 则
可化简为
.
填空题
普通
3. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
A.
(a﹣b)
2
=a
2
﹣2ab+b
2
B.
a(a﹣b)=a
2
﹣ab
C.
(a﹣b)
2
=a
2
﹣b
2
D.
a
2
﹣b
2
=(a+b)(a﹣b)
单选题
普通