0
返回首页
1. 若“!”是一种数学运算符号,并且1!= 1; 2!= 2×1= 2; 3!= 3×2×1= 6;
4!= 4×3×2×1= 24…………;则
的值为
.
【考点】
定义新运算;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 定义新运算:
, 其中
,
,
,
为实数.例如:
. 如果
, 那么
.
填空题
容易
2. 已知a,b为有理数,如果规定一种新的运算“※”,规定:
, 例如:
, 计算:
.
填空题
容易
3. 对于实数a,b,定义运算“*”:a *b=
.例如:因为4>2,所以4*2=4
2
-4×2=8,则(-3)*(-2)=
.
填空题
容易
1. 新定义:函数图象上任意一点
,
称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为该函数的“特征值”.一次函数
的“特征值”是
.
填空题
普通
2. 对于实数a,b,定义运算“※”如下:a※b=a
2
﹣ab,例如,5※3=5
2
﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为
.
填空题
普通
3. 在平面直角坐标系中,对于平面内任一点
, 若规定以下三种变换:①△
,
,
;②〇
,
,
;③
,
,
, 按照以上变换例如:△
〇
,
,
, 则〇
等于
.
填空题
普通
1. 定义新运算“
”,规定:
, 则
的运算结果为( )
A.
-5
B.
-3
C.
5
D.
3
单选题
容易
2. 如图
,
是
的直径,点
、
、
将半圆分成四等分,把五位同学分别编为序号
、
、
、
、
按顺序站在半圆的五个点上,现把最右边的
号同学调出,站到
号和
号两位同学之间,再把最右边的
号同学调出,站到
号和
号两位同学之间,得到图
, 称为“
次换序”
接着按同样的方法,把最右边的
号同学调出,站到
号和
号两位同学之间,再把最右边的
号同学调出,站到
号和
号两位同学之间,得到图
, 称为“
次换序”
以此类推,
;若从图
开始,经过“
次换序”后,得到的顺序与图
相同,则
的值可以是( )
A.
B.
C.
D.
单选题
普通
3. 对于实数
、
, 定义一种运算“
”为:
, 有下列命题:
;
方程
的根为:
,
;
不等式组
的解集为:
;
点
在函数
的图象上.
其中正确的是( )
A.
B.
C.
D.
单选题
普通
1. 定义一种新运算,规定
.
(1)
计算
的值;
(2)
表示数m的点M在数轴上的位置如图所示,且
,求m的值.
综合题
普通
2. 我们定义一种新运算“*":a *b=a
2
-b+ab.例如:1 * 2=1
2
-2+1×2=1.
(1)
求2* (- 3)的值.
(2)
求(-2) *[2* (-5)]的值.
解答题
普通
3. 定义:关于
,
的二元一次方程
(其中
)中的常数项
与未知数系数
,
之一互换,得到的方程叫“交换系数方程”,例如:
的交换系数方程为
或
.
(1)
方程
与它的“交换系数方程”组成的方程组的解为
;
(2)
已知关于
,
的二元一次方程
的系数满足
, 且
与它的“交换系数方程”组成的方程组的解恰好是关于
,
的二元一次方程
的一个解,求代数式
的值;
(3)
已知整数
,
,
满足条件
, 并且
是关于
,
的二元一次方程
的“交换系数方程”求
的值.
实践探究题
困难
1. 对于任意实数a、b,定义一种运算:
,若
,则x的值为
.
填空题
普通
2. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形
,对角线
交于点O.若
,则
.
填空题
普通
3. 对于实数a,b,定义运算“※”如下:a※b=a
2
﹣ab,例如,5※3=5
2
﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为
.
填空题
普通