0
返回首页
1. 如图,在
AB
、
BC
、
CD、DE
中是四根长度相同的小木棒,
A
、
C
、
E
三点共线,
BC⊥CD
于点
C
, 若
AC
=6,
CE=
8,则一根小木棒的长为( )
A.
5
B.
6
C.
7
D.
8
【考点】
勾股定理; 三角形全等的判定-ASA;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,斜边长为c.若
,
, 则
的值为( )
A.
12
B.
14
C.
16
D.
18
单选题
容易
2. 如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是( )
A.
8
B.
10
C.
64
D.
136
单选题
容易
3. 如图,在
中,
, 若
,
, 则
的长是( )
A.
B.
C.
D.
单选题
容易
1. 如图,长方形ABCD中,E,M分别为AB,CD边上的点,
,
,
,
, 则EM的长为( )
A.
5
B.
3
C.
6
D.
7
单选题
普通
2. 如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )
A.
50
B.
41
C.
25
D.
16
单选题
普通
3. 如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两个正方形按图2的方式放置在大正方形内,若四边形
面积为6,四边形
的面积为2,四边形
的面积为2.5,四边形
的面积为4,则知道图中阴影部分的面积是( )
A.
1.5
B.
2
C.
2.5
D.
3
单选题
普通
1. 如图,已知
于
于
是CD的中点,则AE的长为
.
填空题
普通
2. 如图,直线
上有三个正方形
,
,
, 若
,
的面积分别为
和
, 则
的面积为
.
填空题
容易
3. 如图,已知圆柱的底面直径
, 高
, 小虫在圆柱表面爬行,从点
爬到点
, 然后在沿另一面爬回点
, 则小虫爬行的最短路程为
.
填空题
普通
1. 如图1,在等腰三角形ABC中,AB=AC,BD是边AC上的高线,CD=1,AD=4.点P是线段DA上的一点,作PE⊥BC于点E,连接DE.
(1)
求AB=
,BC=
.
(2)
①当点P在线段AD上时,若△CDE是以CD为腰的等腰三角形,请求出所有符合条件的DP的长度.
②如图2,设PE交直线AB于点F,连接BP,若AF=3,求BP的长.
综合题
普通
2. 如图1,在正方形ABCD中,点E是BC上一动点,将正方形沿着AE折叠,使点B落在F处, 连接BF、AF, 延长BF交CD 于点 G.
(1)
【初步探究】在 E的运动过程中,△ABE与△BCG始终保持全等的关系,请说明理由.
(2)
【深入探究】把图1中的AF 延长交CD于点H, 如图2, 若
求线段CE的长.
(3)
【拓展延伸】如图3, 将正方形改成矩形, 同样沿AE折叠, 连接BF, 延长BF、AF交直线CD与点 G、H两点,若
直接写出
的值
(用含m 的代数式表示).
实践探究题
困难
3. 等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
(1)
求∠ACB的大小(用α,β表示);
(2)
连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
(3)
在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,①求证:GM∥BC,GM=
BC②请直接写出
的值.
综合题
困难
1. 如图,在边长为3的正方形
中,
,
,则
的长是( )
A.
1
B.
C.
D.
2
单选题
普通
2. 如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=
, 则AB的长是
.
填空题
普通
3. 如图,在矩形ABCD中
.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为
,点N运动的速度为
,且
.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形
.若在某一时刻,点B的对应点
恰好在CD的中点重合,则
的值为
.
填空题
困难