0
返回首页
1. 小明用图1所示的一副七巧板在一个矩形中拼了一条龙的形状(图2).若
A
,
B
,
C
三点共线且点
D
,
A
,
E
,
F
在矩形的边上,则矩形的长与宽之比为
.
【考点】
勾股定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图1,筒车是我国古代发明的一种水利灌溉工具,筒车盛水筒的运行轨迹是以
为圆心的一个圆,可简化为图2.若
被水面所截的弦长
米,
的半径为
米,则筒车最低点距水面
米.
填空题
容易
2. 如图,有一块直角三角形纸片,直角边AC=3cm,BC=4cm,将直角边AC沿AD所在的直线折叠,使点C落在斜边AB上的点E处,则CD的长为
cm.
填空题
容易
3. 直角三角形的两边分别是6和8,则第三边等于
.
填空题
容易
1. 如图,在数轴上,
, 过点
作直线
于点
, 在直线
上截取
, 且点
在
上方.连结
, 以点
为圆心,
为半径作弧交直线
于点
, 则点
的横坐标为
填空题
普通
2. 如图,点
把线段
分割成
和
, 若以
为边的三角形是一个直角三角形, 则称点
是线段
的 “勾股分割点”. 已知点
是线段
的“勾股分割点”, 若
, 则
的长为
填空题
普通
3. 毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形, 又因为重复数次后的形状好似一棵树,所以被称为 “勾股树”. 如图是一株美丽的勾股树, 其中所有的四边形都是正方形,所有的三角形都是直角三角形.
(1)
如图①, 若最大正方形
的边长是 3 , 则正方形
,
的面积之和是
(2)
如图②, 若正方形
的边长分别是
, 则最大正方形
的面积是
填空题
困难
1. 在直角三角形中,若勾为3,股为4,则弦为( )
A.
5
B.
6
C.
7
D.
8
单选题
容易
2. 如图,点
把线段
分割成
和
, 若以
为边的三角形是一个直角三角形, 则称点
是线段
的 “勾股分割点”. 已知点
是线段
的“勾股分割点”, 若
, 则
的长为
填空题
普通
3. 一个零件的形状如图所示, 已知
, 则
的长为( )
A.
B.
C.
D.
单选题
普通
1. 如图,点D在
中,
,
,
,
,
.
(1)
求
长;
(2)
求图中阴影部分的面积.
解答题
普通
2. 如图,
中,
,
, F为AB延长线上一点,点E在BC上,且
.
(1)
求证:
;
(2)
若
,
, 求
的长.
综合题
普通
3. 在△ABC中,∠C=90°,AC=6,BC=8.回答下列问题:
(1)
由勾股定理,易知AB=
;
(2)
如图,用尺规作图的方法作射线n交BC边于P,求线段PC的长.
作图题
普通
1. 在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=
.
填空题
普通
2. 如图,在平面直角坐标系中,菱形
OABC
的顶点
O
为坐标原点,顶点
A
在
x
轴的正半轴上,顶点
C
在反比例函数
的图象上,已知菱形的周长是8,
,则
k
的值是
.
填空题
普通
3. 如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E,F,G,H分别是AB,BD,CD,AC的中点,则四边形EFGH的周长为( )
A.
12
B.
14
C.
24
D.
21
单选题
普通