0
返回首页
1. 勾股定理被誉为 “几何明珠”, 如图 19-12 是我国古代著名的“赵爽弦图”, 它由 4 个全等的直角三角形拼成, 已知大正方形面积为 25 , 小正方形面积为 1 . 若用
表示直角三角形的两直角边的长, 则下列结论不正确的是( )
A.
B.
C.
D.
【考点】
勾股定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 在直角三角形中,若勾为3,股为4,则弦为( )
A.
5
B.
6
C.
7
D.
8
单选题
容易
2. 如图, 网格中每一小格的边长均为 1 , 点
都在格点上, 若
, 则
的长为 ( )
A.
B.
C.
D.
单选题
容易
3. 直角三角形的两条直角边的长分别为6和8,则斜边长为( )
A.
10
B.
5
C.
4
D.
3
单选题
容易
1. 一个零件的形状如图所示, 已知
, 则
的长为( )
A.
B.
C.
D.
单选题
普通
2. 已知直角三角形的三边
满足
, 分别以
为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为
, 均重叠部分的面积为
, 则( )
A.
B.
C.
D.
大小无法确定
单选题
普通
3. 在△ABC中,AB=10,AC=2
,BC边上的高AD=6,则另一边BC等于( )
A.
10
B.
8
C.
6或10
D.
8或10
单选题
普通
1. 如图,在数轴上,
, 过点
作直线
于点
, 在直线
上截取
, 且点
在
上方.连结
, 以点
为圆心,
为半径作弧交直线
于点
, 则点
的横坐标为
填空题
普通
2. 小明用图1所示的一副七巧板在一个矩形中拼了一条龙的形状(图2).若
A
,
B
,
C
三点共线且点
D
,
A
,
E
,
F
在矩形的边上,则矩形的长与宽之比为
.
填空题
普通
3. 如图,点
把线段
分割成
和
, 若以
为边的三角形是一个直角三角形, 则称点
是线段
的 “勾股分割点”. 已知点
是线段
的“勾股分割点”, 若
, 则
的长为
填空题
普通
1. 某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽
, 水最深的地方的高度为4cm.
(1)
求这个圆形截面的半径.
(2)
求图中阴影部分的面积.
综合题
普通
2. 如图,点D在
中,
,
,
,
,
.
(1)
求
长;
(2)
求图中阴影部分的面积.
解答题
普通
3. 如图,
中,
,
, F为AB延长线上一点,点E在BC上,且
.
(1)
求证:
;
(2)
若
,
, 求
的长.
综合题
普通
1. 在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=
.
填空题
普通
2. 如图,在平面直角坐标系中,菱形
OABC
的顶点
O
为坐标原点,顶点
A
在
x
轴的正半轴上,顶点
C
在反比例函数
的图象上,已知菱形的周长是8,
,则
k
的值是
.
填空题
普通
3. 如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E,F,G,H分别是AB,BD,CD,AC的中点,则四边形EFGH的周长为( )
A.
12
B.
14
C.
24
D.
21
单选题
普通