0
返回首页
1. 已知事件
A
,
B
是相互独立事件,且
,
, 则( )
A.
B.
C.
D.
【考点】
相互独立事件的概率乘法公式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
多选题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 随机事件A与B互相独立,且B发生的概率为0.4,A发生且B不发生的概率为0.3,则( )
A.
A发生的概率为0.6
B.
B发生且A不发生的概率为0.2
C.
A或B发生的概率为0.9
D.
A与B同时发生的概率0.2
多选题
容易
2. 甲乙两人进行围棋比赛,共比赛
局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为
, 则( )
A.
B.
C.
D.
的最小值为
多选题
容易
3. 某人有6把钥匙,其中n把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p,则下列结论正确的是( )
A.
当
时,
B.
当
时,
C.
当
时,
D.
当
时,
多选题
容易
1. 抛出一枚质地均匀的硬币n次,得到正反两面的概率相同.事件
次中既有正面朝上又有反面朝上,事件B:n次中最多有一次正面朝上,下列说法正确的是( )
A.
当
时,A,B相互独立
B.
当
时,A,B相互独立
C.
时,
D.
时,
多选题
普通
1. 若事件
发生的概率分别为
, 且
与
相互独立,则
.
填空题
容易
2. 四个村庄
之间建有四条道路
.在某个月的30天中,每逢单数日道路
开放,
封闭维护,每逢双数日道路
开放,
封闭维护.一位游客起初住在村庄
, 在该月的第
天,他以
的概率沿当天开放的道路去往相邻村庄投宿,以
的概率留在当前村庄,并且他在这30天里的选择是相互独立的.则第30天结束时该游客住在村庄
的概率为
.
填空题
困难
3. 在某次美术专业测试中,若甲、乙、丙三人获得优秀等级的概率分别是
和0.5,且三人的测试结果相互独立,则测试结束后,在甲、乙、丙三人中恰有两人没达优秀等级的前提条件下,乙没有达优秀等级的概率为( )
A.
B.
C.
D.
单选题
普通
1. 某红茶批发地只经营甲、乙、丙三种品牌的红茶,且甲、乙、丙三种品牌的红茶优质率分别为
.
(1)
若该红茶批发地甲、乙、丙三种品牌的红茶市场占有量的比例为
, 小张到该批发地任意购买一盒红茶,求他买到的红茶是优质品的概率;
(2)
若小张到该批发地甲、乙、丙三种品牌店各任意买一盒红茶,求他恰好买到两盒优质红茶的概率.
解答题
普通
2. 为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,教育部启动了“强基计划”的招生改革工作.某校强基招生面试有两道题,两道题都答对者才能通过强基招生面试.假设两题作答相互独立,现有甲、乙、丙三名学生通过考核进入面试环节,他们答对第一题的概率分别是
, 答对第二题的概率分别是
.
(1)
求甲考生通过某校强基招生面试的概率;
(2)
求甲、乙两位考生中有且只有一位考生通过强基招生面试的概率;
(3)
求甲、乙、丙三人中至少有一人通过强基招生面试的概率.
解答题
普通
3. 在一个盒子中有2个白球,3个红球,甲、乙两人轮流从盒子中随机地取球,甲先取,乙后取,然后甲再取,……,每次取1个,取后不放回,直到2个白球都被取出来后就停止取球.
(1)
求2个白球都被乙取出的概率;
(2)
求2个白球都被甲取出的概率;
(3)
求将球全部取出才停止取球的概率
解答题
困难
1. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为
,且
.记该棋手连胜两盘的概率为p,则( )
A.
p与该棋手和甲、乙、丙的此赛次序无关
B.
该棋手在第二盘与甲比赛,p最大
C.
该棋手在第二盘与乙比赛,p最大
D.
该棋手在第二盘与丙比赛,p最大
单选题
普通
2. 甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为
和
,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为
,3次活动中,甲至少获胜2次的概率为
.
填空题
普通
3. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.
甲与丙相互独立
B.
甲与丁相互独立
C.
乙与丙相互独立
D.
丙与丁相互独立
单选题
普通