0
返回首页
1. “今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48;如果乙得到甲所有钱的
,那么乙也共有钱48.问甲、乙两人各带了多少钱? 请解答这个问题.
【考点】
二元一次方程组的应用-古代数学问题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 古老的“鸡兔同笼问题”:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?
综合题
容易
2. 中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为
两,
两,可得方程组是.
填空题
容易
3. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九十四文钱,甜果苦果买九十个,甜果一个三文钱,苦果三个一文钱,试问甜苦果各几个?
综合题
容易
1. 我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x、y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是
, 请你根据图2所示的算筹图,列出方程组,并用代入法求解(写出解方程组的详细过程).
解答题
普通
2. 《孙子算经》中有一道题, 原文是: 今有三人共车, 一车空; 二人共车, 九人步. 问人与车各几何? 译文为: 今有若干人乘车, 每 3 人共乘一车, 最终剩余 1 辆车; 若每 2 人共乘一车,最终剩余 9 个人无车可乘. 问共有多少人,多少辆车?
解答题
普通
3. 我国古代数学名著《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果 1 托为5尺,那么索长、竿长各是多少?请解答这个问题.
解答题
普通
1. 《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图中的(1)(2).图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是
在图(2)所示的算筹图中有一个图形被墨水覆盖了,如果图(2)所表示的方程组中x的值为3,则被墨水所覆盖的图形是( )
A.
B.
C.
D.
单选题
普通
2. 《九章算术》中有如下问题:“雀五、燕六共重十九两;雀三与燕四同重.雀重几何?”题意是:若5只雀、6只燕共重19两;3只雀与4只燕一样重.设每只雀的重量为x两,每只燕的重量为y两,根据题意,可列方程组为
.
填空题
容易
3. 在中国古代的数学著作《孙子算经》中记载了一道题目,大意是:一百匹马,一百块瓦,大马一匹拖三块,小马三匹拖一块.问:大马小马各几何?下列结论正确的是
A.
大马40匹,小马60匹
B.
大马30匹,小马70匹
C.
大马25匹,小马75匹
D.
大马15匹,小马85匹
单选题
容易
1. 《九章算术》中有一道题的条件是:“今有大器五小器一容三斛;大器一小器五容二斛.”大致意思是有两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米
(1)
求大桶和小桶各可盛多少斛米?
(2)
若打算购买大桶和小桶共12个,要求大桶的数量不多于小桶的2倍,且大小桶所盛米之和不少于5斛米,则有几种购买方案?
(3)
在(2)的条件下,哪种方案能使所盛米的量最多?
解答题
普通
2. 《九章算术》中有一道题的条件是:“今有大器五小器一容三斛;大器一小器五容二斛.”大致意思是有两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米.
(1)
求大桶和小桶各可盛多少斛米?
(2)
若打算购买大桶和小桶共12个,要求大桶的数量不多于小桶的2倍,且大小桶所盛米之和不少于5斛米,则有几种购买方案?
(3)
在(2)的条件下,哪种方案能使所盛米的量最多?
综合题
普通
3. 我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”
根据以上译文,提出以下两个问题:
(1)
求每头牛、每只羊各值多少两银子?
(2)
若某商人准备用11两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请你为商人列出所有可能的购买方法.
综合题
普通
1. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为
x
斗,行酒为
y
斗,则可列二元一次方程组为
.
填空题
普通
2. 《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒
斛、1个小桶可以盛酒
斛.根据题意,可列方程组为
.
填空题
普通
3. 我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A.
B.
C.
D.
单选题
普通