0
返回首页
1. 如图所示,在平面直角坐标系中,以原点
为圆心的圆过点
, 直线
与
交于B,C两点,则弦BC的长的最小值为
.
【考点】
圆的综合题;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
困难
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图,已知A(6,0),B(4,3)为平面直角坐标系内两点,以点B圆心的⊙B经过原点O,BC⊥x轴于点C,点D为⊙B上一动点,E为AD的中点,则线段CE长度的最大值为
.
填空题
困难
2. 如图,
、
、
都是
的半径,
.
(1)
求证:
;
(2)
若
,
, 求
的半径.
填空题
困难
3. 如图,点
在一直线上,
,
在直线
同侧,
,
,
, 当
时,
外接圆的半径为
.
填空题
困难
1. 如图,在
中,弦BC,ED所对的圆心角分别是
,
与
互补,已知
.当
时,弦BC与DE之间的距离等于( ).
A.
7
B.
1或7
C.
D.
或
单选题
困难
2. 如图所示,
与
轴交于点
, 与
轴的正半轴交于点
.若
, 则点
的纵坐标为( ).
A.
B.
C.
D.
单选题
普通
3. 在等腰直角三角形
中,
,
D
是
边上一动点,连接
, 以
为直径的圆交
于点
E
, 则
长的最小值是( )
A.
2
B.
C.
D.
3
单选题
普通
1. 如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交
于点F,交过点C的切线于点D.
(1)
求证:DC=DP;
(2)
若∠CAB=30°,当F是
的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.
综合题
困难
2. 如图,⊙O中,弦AC、BD交于点E,连接AB、AD、OB,∠ABO=∠CAD
(1)
求证:AC⊥BD;
(2)
连接CD,∠BDC+2∠ADB=180°,求证:AB=AC;
(3)
在(2)的条件下,连接OC交BD于点F,⊙O的弦BH交AC于点G,CG=DF,AB=10,
=10,求GH的长.
综合题
困难
3. 如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE
(1)
求证:AC
2
=AE•AB;
(2)
过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)
设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.
综合题
困难
1. 如图,
是⊙O的直径,点
C
为圆上一点,
的平分线交
于点
D
,
,则⊙O的直径为( )
A.
B.
C.
1
D.
2
单选题
普通
2. 如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=
, 则AD的长是
.
填空题
普通
3. 如图所示,已知三角形
为直角三角形,
为圆
切线,
为切点,
则
和
面积之比为( )
A.
B.
C.
D.
单选题
普通