时间/分钟
10~20
20~30
30~40
40~50
甲的频率
0.1
0.4
0.2
0.3
乙的频率
0
0.6
某日工作单位接到一项任务,需要甲在30分钟内到达,乙在40分钟内到达,用表示甲、乙两人在要求时间内从家中到达单位的人数,用频率估计概率,则的数学期望和方差分别是( )
X
-1
1
P
a
b
(ⅰ)利用该正态分布,求;
(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E(Z);
参考数据:若随机变量ξ服从正态分布 , 则 , .
(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量服从正态分布 , 则 , . )
(ii)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件等品芯片的利润是元,一件等品芯片的利润是元,根据(1)的计算结果,试求的值,使得每箱产品的利润最大.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.