(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
相关公式:
①求出 a+b 的期望 E(a+b)
②现在实际上选取了四个点尝试运用样本的平均值去估计数学期望,以此来得到估计值 (四舍五入取整).
X
…
随机变量Y满足分布列:
Y
且随机变量X与Y相互独立,即 , , . 求证:;
1
2
3
4
5
P
m
n
若 , 则( )
产品等级
一等品
二等品
三等品
样本数量(件)
50
30
20
①求X的分布列;
②直接写出Y的数学期望 .
某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.