0
返回首页
1. 如图,正方形ABCD和正方形AEFG有公共点A,点B在线段DG上.
(1)
判断DG与BE的位置关系,并说明理由:
(2)
若正方形ABCD的边长为2,正方形AEFG的边长为2
,求BE的长.
【考点】
全等三角形的判定与性质; 勾股定理; 正方形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,四边形ABCD、BEFG均为正方形,连接AG、CE.
(1)
求证:AG=CE;
(2)
求证:AG⊥CE.
综合题
普通
2. 勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图;分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.
(1)
设正方形ABDE的面积为
, 正方形BCFG的面积为
, 正方形ACHI的面积为
, 证明
;
(2)
连接BI、CE,求证:EC=BI;
(3)
过点B作AC的垂线,交AC于点M,交IH于点N.试说明四边形AMNI与正方形ABDE的面积相等.
综合题
普通
3. 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,Q为AB的中点.动点P从点A出发沿折线AC--CB以每秒2个单位长度的速度运动,连结PQ,以PQ为边构造正方形PMNQ且边MN与点B始终在边PQ同侧.设点P的运动时间为t秒(>0).
(1)
线段AB的长为
(2)
当点P在边AC上运动时,线段CP的长为
▲
(用含t的代数式表示) .
①当正方形PMNQ与△ABC重叠部分图形是正方形时,求t的取值范围.
②当边MN的中点落在△ABC的边上时,求正方形PMNQ的面积.
(3)
当点P不与点C重合时,作点C关于直线PQ的对称点C'当PC'⊥AB时,直接写出t的值.
综合题
普通
1. 如图,边长为
的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=( )
A.
B.
C.
D.
单选题
普通
2. 如图,点M,
分别在正方形
的边
,
上,且
,把
绕点A顺时针旋转
得到
.
(1)
求证:
≌
.
(2)
若
,
,求正方形
的边长.
综合题
普通
3. 如图,正方形
的边长为4,点
在边
上,
,
,点F在射线
上,且
,过点
作
的平行线交
的延长线于点
,
与
相交于点G,连接
、
、
.下列结论:①
的面积为
;②
的周长为8;③
;其中正确的是
A.
①②③
B.
①③
C.
①②
D.
②③
单选题
困难