如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.
(1)如图,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;
(2)如图,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.
操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系 ;
结论2:DM、MN的位置关系 ;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
在一次综合实践活动课上,郑老师给每位同学各发了一张正方形纸片,请同学们思考如何仅通过折纸的方法来确定正方形一边上的一个三等分点.
【操作探究】
“励志”小组的同学经过一番思考和讨论交流后,进行了如下操作:
第1步:如图1所示,先将正方形纸片对折,使点与点重合,然后展开铺平,折痕为;
第2步:将边沿解析到的位置;
第3步:延长交于点 , 则点为边的三等分点.
证明过程如下:连接 ,
正方形沿折叠
, ,
又 , △△
. 设(个单位), ,
是的中点,
▲ ,
在△中,可列方程: ▲ ,
解得: , 即是边的三等分点.
“励志”小组是这样操作的:
第1步:如图2所示,先将正方形纸片对折,使点与点重合,然后展开铺平,折痕为;
第2步:再将正方形纸片对折,使点与点重合,再展开铺平,折痕为 , 沿翻折得折痕交于点;
第3步:过点折叠正方形纸片 , 使折痕 .
②结合“励志”小组操作过程,判断点是否为边的三等分点,并证明你的结论;
②如图4,在菱形中, , , 是上的一个三等分点,记点关于的对称点为 , 射线与菱形的边交于点 , 请直接写出的长.
重叠。
B在正方形网格的格点上,C,D是纸片边上的中点。沿着AB,CD将这个“十字形”纸片剪2刀,得到4块图案①,②,③,④,保持①不动,移动②,③,④,可以拼接成一个大正方形纸片。请在正方形网格中画出拼接后的大正方形,并标注对应的编号。
①HQ= ▲ , HN= ▲ ;
②求正方形BOPG的边长。