如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).
(1)求证:A1C⊥平面BCDE;
(2)平面α过直线CM和点B,试作出平面α与△A1BE的交线,并说明作法;
在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2 , D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.
证明:BC⊥AB1
如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
求证:AD⊥BM
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如图),AE=EB=DE=2.现将△ADE沿DE折起,使二面角A﹣DE﹣B为90°,P,Q分别是线段AE和线段EB上任意一点,若MQ⊥PN时,求PQ长度的取值范围
(Ⅰ)证明:EF⊥DB;
(Ⅱ)求DF与面DBC所成角的正弦值.
平面图形ABB1A1C1C如图1所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.