(1)则 , , A、B两点之间的距离= ;
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2021次时,求点P所对应的有理数.
(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的2倍?请求出此时点P的位置,并直接写出是第几次运动.
问题情境:如图1是牛顿摆的示意图,它由7根等距离的细线分别连接一颗相同的小铁球组成.在牛顿摆静止状态下,可将每个小铁球的最低处抽象成点.同学们利用牛顿摆和数轴进行探究.
初步分析:(1)如图2,将牛顿摆放在数轴的上方,此时铁球④的最低点在数轴上对应的数为0,铁球⑥的最低点在数轴上对应的数为5,则铁球①的最低点在数轴图2上对应的数为________;
深入探究:(2)如图3,将牛顿摆放在数轴的上方,铁球①与铁球⑤的最低点在数轴上对应的数分别为 , . 勤学小组提出如下问题,请你解答.
问题1:当 , 时,铁球⑦的最低点在数轴上对应的数为________;
问题2:铁球⑦的最低点在数轴上对应的数为________(用含 , 的代数式表示);
问题3:点是数轴上的一点,若点到铁球⑦最低点的距离是铁球①与⑤最低点距离的2倍,则点在数轴上对应的数为________(用含 , 的代数式表示).
例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.
如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2
①求的最小值;
②求的最小值.