埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为2,定义正方形 , 的顶点为“框架点”,定义两正方形交线为“极轴”,其端点为“极点”,记为 , 将极点 , 分别与正方形的顶点连线,取其中点记为 , , , 如(图3).埃舍尔多面体可视部分是由12个四棱锥构成,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,图4我们构造了其中两个四棱锥与
(ii)若集合.记集合中所有点构成的几何体为 , 求几何体相邻两个面(有公共棱)所成二面角的大小