0
返回首页
1. 如图,在平面直角坐标系
中,直线
分别交
轴和
轴于点A,B,直线
交
轴正半轴于点C,交
于点
,
.
(1)
求直线
的函数解析式;
(2)
若P是直线
上一点,且使得
, 直接写出点P的坐标.
【考点】
待定系数法求一次函数解析式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 如图,已知直线
过定点M,与抛物线
交于A、B两点,其中点A、B分别在第二、第一象限,过点M的另一条直线
交y轴于点N.求点M的坐标和直线
的解析式.
解答题
普通
2. 在平面直角坐标系中,已知点
,
,
, 直线
经过点
, 抛物线
恰好经过
,
,
三点中的两点.
(1)
求直线
的解析式;
(2)
求
,
的值;
(3)
平移抛物线
, 使其顶点仍在直线
上,求平移后所得抛物线与
轴交点纵坐标的最大值.
解答题
普通
3. 在平面直角坐标系中,已知点
,
,
, 直线
经过点
, 抛物线
恰好经过
,
,
三点中的两点.
(1)
求直线
的解析式;
(2)
求
,
的值;
(3)
平移抛物线
, 使其顶点仍在直线
上,求平移后所得抛物线与
轴交点纵坐标的最大值.
解答题
普通
1. 如图,已知一次函数
的图象与反比例函数
的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
(1)
求一次函数的解析式;
(2)
求
的面积。
综合题
普通
2. 如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=
(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=
,且点B的坐标为(n,-2).
(1)
求一次函数与反比例函数的解析式;
(2)
E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
综合题
普通
3. 如图,已知二次函数
的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
(1)
求a的值和直线AB的解析式;
(2)
过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S
1
, S
2
, 若S
1
=4S
2
, 求m的值;
(3)
点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱
周长取最大值时,求点G的坐标.
综合题
困难