(1)轮廓线、所在的抛物线的解析式为: ;
(2)将水杯绕点倾斜倒出部分水,杯中水面 , 如图 当倾斜角 时, 水面宽度为
素材
内容
素材1
如图1,这种高脚杯从下往上分为三部分:
杯托,杯脚,杯体.杯托为一个圆,水平放置时候,杯脚经过杯托圆心,并垂直任意直径,杯体的水平横截面都为圆,这些圆的圆心都在杯脚所在直线上.
素材2
图2坐标系中,特制男士杯可以看作由线段 , , 抛物线(实线部分),线段 , 线段绕轴旋转形成的立体图形(不考虑杯子厚度,下同);特制女士杯可以看作由线段 , , 抛物线(虚线部分)绕轴旋转形成的立体图形
素材3
已知,图2坐标系中, , 记为 , .
根据以上素材内容,尝试求解以下问题:
水平距离
3
3.5
4
4.5
竖直高度
10
__________
6.25
①求抛物线的解析式.
②补全表格.
信息二:已知运动员在到达最高点后,在落水前至少需要的时间才能完成极具难度的跳水动作.
①请通过计算说明,在(1)的这次训练中1,运动员能否顺利完成极具难度的跳水动作?
②运动员进行第二次跳水训练,此时她们竖直高度与水平距离的关系为 . 若她在到达最高点后要顺利完成极具难度的跳水动作,则n的取值范围是__________ .
(1)求抛物线的解析式及点M的坐标;
(2)直线ME与BC交于点N,点P为直线BC上方抛物线上一点,在直线BC上是否存在一点Q,使得以点M、N、P、Q为顶点的四边形是平行四边形,若存在,请求出点Q的坐标;
(3)点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C是直角三角形时,直接写出点F的坐标.
(1)求该抛物线的解析式;
(2)若点是该抛物线对称轴上的一个动点,求周长的最小值;
(3)如图(2),若是线段上的一个动点与、不重合),过点作平行于轴的直线交抛物线于点 , 交轴于点 , 设点的横坐标为 , 的面积为 .
①求与的函数关系式;
②是否存在最大值?若存在,求出最大值及此时点的坐标; 若不存在,请说明理由.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与轴的另一交点为C,抛物线的顶点为D,试求出的面积;
(3)是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.
如图,抛物线y=﹣ x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(Ⅰ)求抛物线的解析式及点D的坐标;
(Ⅱ)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(Ⅲ)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.