0
返回首页
1. 甲乙两车同时从 A地出发,向 B地匀速行驶,与此同时,丙车从B地出发向A 地匀速行驶,当丙行了 30 千米时与甲相遇,相遇后甲立即掉头,并且将速度提高到原来的2倍,当甲乙两车相遇时,丙行驶了40千米。当乙丙两车相遇时,甲恰好回到A地,那么 AB 两地的距离是多少千米?
【考点】
多次相遇与追及;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解决问题
困难
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 甲车以每小时 160 千米, 乙车以每小时 20 千米的度在长 210 千米的环形公路上同时同向同地出发, 每当甲追上一次, 甲速就减少
乙速就增加
, 在两车速度正好相等的时候, 甲车行了多少千米?
解决问题
容易
2. 甲乙二人分别从A、B两地出发相向而行,到达目的地后马上掉头回到出发地,他们第一次相遇距A地800米,第二次距B地500米,A、B两地相距多少米?
解决问题
容易
1. 如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行. 他们在离A点100米的C点第一次相遇. 亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇. 整个过程中,两人各自的速度都保持不变.求A、B间的距离.
解决问题
普通
2. 甲从A地出发匀速去B地,在AB中点C地被从A地晚出发10分钟的乙追上;乙又行了280米,立即调头,再行一段与甲迎面相遇,这时甲已离开C地6分钟;结果当甲到B地时,乙恰好回到A地.如果乙的速度也始终末变,那么A、B两地间的路程多少米?
解决问题
困难
3. 甲车从
A
地到
B
地需要5小时,乙车从
B
地到
A
地,速度是甲的
, 现在甲、乙二车分别从
A
、
B
两地同时出发,相向而行,在途中相遇后继续前进,甲车到
B
地后立即返回,乙车到
A
地后也立即返回,他们在途中又一次相遇,如果两次相遇点相距66千米,
A
、
B
两地相距多少千米?
解决问题
困难
1. 小明和小红各拿了一辆玩具车在400米跑道上进行比赛,小明的玩具车每分钟跑30米,小红的玩具车每分钟跑20米,但小红带了一个神秘遥控器,按第一次会使小明的玩具车以原来速度的10%倒退1分钟,按第二次会使小明的玩具车以原来速度的20%倒退1分钟,以此类推,按第
N
次,使小明的玩具车以原来的速度的
N
×10%倒退1分钟,然后再按原来的速度继续前进,如果小红在比赛中最后获胜,她最少按
次遥控器.
填空题
困难
2. 甲走一段路用40分钟,乙走同样一段路用30分钟,从同一地点出发,甲先走5分钟,乙再开始追,乙
分钟才能追上甲。
填空题
普通
3. 甲、乙两车分别从A、B两地出发,相向而行。出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%这样,当甲到达B地时,乙离A地还有10千米,那么A、B两地相距
千米。
填空题
普通
1. 湖的周围有一条环行的公共汽车线路,从路上一点A乘车向右绕湖一周时,从A到B地是平路,B地到C地是上坡路,C地到A地是下坡路。11 时整,汽车甲从A出发向右开,同时汽车乙从A地出发向左开,途中两车在11时28分相遇,然后甲在12时正,乙在11时48分,分别回到A地。公共汽车走平路、上坡路和下坡路的速度分别为20公里/小时、15公里/小时和30公里/小时,不考虑途中停车的时间。问:
(1)
相遇处在哪一段路上: AB、BC 还是CA,说明理由:
(2)
求平路AB的长。
解决问题
困难
2. 为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动。自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工后原路返回甲地,自行车队与邮玫车行驶速度均保持不变,并且邮政车行驶速度是自行车行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的关系图像,请根据图象提供的信息解答下列各题:
(1)
自行车队行驶的速度是
km /h;
(2)
邮政车出发多少小时与自行车队首次相遇?
(3)
邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?
解决问题
困难
3. 如图,AB和CD是数轴上的两条线段,线段AB的长度为1个单位长度,线段CD的长度为2个单位长度,B,C之间的距离为6个单位长度且与原点的距离相等。分别以AB, CD为边作正方形ABEF,正方形CDGH。
(1)
直接写出:B表示的数为
,D表示的数为
。
(2)
P.Q是数轴上的动点,点P从B出发,以每秒1个单位长度的速度向C运动,点Q从C同时出发,向B运动,P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,分别到达B,C点后立即返回,第二次相遇时P,Q两点同时停止运动.已知第一次相遇时。点Р到点C的距离比点Р到点B的距离多两个单位长度,求P,Q第二次相遇时,点Р所表示的数。
(3)
将AB和CD各取一个端点,较近的两个端点之间的距离叫做正方形ABEF 和正方形CDGH之间的最小距离,将AB和CD较远的两个端点之间的距离叫做正方形ABEF和正方形CDGH之间的最大距离。例如图中正方形ABEF和正方形CDGHI之间的最小距离即BC之间的距离,最大距离即A,D之间的距离,若正方形 ABEF以每秒1个单位长度的速度向数轴的正方向运动,正方形COGII以每秒⒉个单位长度的速度向数轴的负方向运动、设运动时间为t秒、当这两个正方形之间的最大距离是最小距离的两倍时,请直接写出t的值。
解决问题
困难
1. 一辆卡车和一钢摩托车同时从A、B两地相向开出,两车在途中距A地60千米处第一次相遇,然后两车维续前进,卡车到达B地,摩托车到达A地后立即返回,两车又在途中距B地30千米处第二次相遇,则A、B两地之间的距离为多少千米?
解决问题
普通
2. 甲、乙、丙三人同时出发,甲、乙两人由A地到B地,丙由B地到A地;甲步行,速度是5千米/小时;乙骑自行车,速度是15千米/小时;丙也骑自行车,速度是18千米小时。已知丙在途中遇到乙后,又经过1小时才遇到甲,求丙和乙从出发到相遇用了多长时间?
解决问题
困难
3. 甲、乙两车同时从A、B两地相向而行,在距B地68千米处相遇,两车各自到达对方车站后,立即返回原地,途中又在距地52千米处相遇,求两次相遇地点之间的距离。
解决问题
困难