1.
重庆江北国际机场T3B航站楼预计于今年完工,该建筑的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.考察图所示的光滑曲线
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E%3A%3C%2Fmn%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
上的曲线段
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%8F%9C%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmath%3E)
, 其弧长为
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3Es%3C%2Fmi%3E%3C%2Fmath%3E)
, 当动点从
A沿曲线段
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%8F%9C%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmath%3E)
运动到
B点时,
A点的切线
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
也随着转动到
B点的切线
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 记这两条切线之间的夹角为
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmtext%3E%CE%B8%3C%2Fmtext%3E%3C%2Fmath%3E)
(它等于
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的倾斜角与
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover+accent%3D%22true%22%3E%3Cmi%3EK%3C%2Fmi%3E%3Cmo%3E%C2%AF%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmtext%3E%CE%B8%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3Es%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为曲线段
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%8F%9C%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmath%3E)
的平均曲率;显然当
B越接近
A , 即
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3Es%3C%2Fmi%3E%3C%2Fmath%3E)
越小,
K就越能精确刻画曲线
C在点
A处的弯曲程度,因此定义曲线
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
在点
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
处的曲率计算公式为
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EK%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmunder%3E%3Cmrow%3E%3Cmn%3El%3C%2Fmn%3E%3Cmn%3Ei%3C%2Fmn%3E%3Cmn%3Em%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%86%92%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmunder%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmtext%3E%CE%B8%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3Es%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmn%3E%27%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%27%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 其中
![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%27%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
.
![](http://tikupic.21cnjy.com/2024/05/06/0b/79/0b7967b5168267d669f0e19de0ef988b.jpeg)