0
返回首页
1. 将一个半径为
的铁球熔化后,浇铸成一个正四棱台形状的铁锭,若这个铁锭的底面边长为
和
, 则它的高为
.
【考点】
棱柱、棱锥、棱台的体积; 球的表面积与体积公式及应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为
.
填空题
容易
2. 如图,圆台
中,
, 其外接球的球心O在线段
上,上下底面的半径分别为
,
, 则圆台外接球的表面积为
.
填空题
容易
3. 现有一个底面半径为
、高为
的圆柱形铁料,若将其熔铸成一个球形实心工件,则该工件的表面积为
(损耗忽略不计).
填空题
容易
1. 一个长方体容器(厚度忽略不计)的高为
, 底面是边长为
的正方形,现装入一定量的水,然后将一个半径为
的实心球缓慢放入该容器内,当球沉到容器底部时,球与水面刚好相切,则装入水的体积为
.
填空题
普通
2. 已知圆锥
的轴截面
为正三角形,球
与圆锥
的底面和侧面都相切.设圆锥
的体积、表面积分别为
, 球
的体积、表面积分别为
, 则
.
填空题
普通
3. 在四面体
中,
, 若
, 则四面体
体积的最大值是
,它的外接球表面积的最小值为
.
填空题
普通
1. 若正四面体
的棱长为
,
M
为棱
上的动点,则当三棱锥
的外接球的体积最小时,三棱锥
的体积为( )
A.
B.
C.
D.
单选题
普通
2. 现准备给一半径为
的实心球体玩具制作一个圆台型带盖的纸质包装盒,要使制成的包装盒能装下该球体玩具,且该包装盒的下底面是半径为
的圆,则制成的包装盒的容积最小为( )
A.
B.
C.
D.
单选题
普通
3. 在半径为
的实心球
中挖掉一个圆柱,再将该圆柱重新熔成一个球
, 则球
的表面积的最大值为( )
A.
B.
C.
D.
单选题
普通
1. 如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成,其中圆柱筒的高
为2米,球的半径
为0.5米.
(1)
求“浮球”的体积(结果精确到0.1立方米);
(2)
假设该“浮球”的建造费用仅与其表面积有关,已知圆锥形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,求该“浮球”的建造费用(结果精确到1元).
解答题
普通
2. 某同学在劳动实践课上制作了一个如图所示的容器,其上半部分是一个正四棱锥,下半部分是一个长方体,已知正四棱锥
的高是长方体
高的
,且底面正方形
的边长为4,
.
(1)
求
的长及该长方体的外接球的体积;
(2)
求正四棱锥的斜高和体积.
解答题
普通
3. 在三棱锥
中,
(1)
若点
,
,
,
分别是棱
,
,
,
上的点,其中
,
.求证:
,
,
三线共点;
(2)
在三棱锥
中,所有棱长都为
.
①求三棱锥
的体积;
②求三棱锥
外接球的表面积.
解答题
普通
1. 已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为
.
填空题
普通