绿化带灌溉车的操作方案
素材1
一辆绿化带灌溉车正在作业,水从喷水口喷出,水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米,上边缘抛物线最高点离喷水口的水平距离为3米,高出喷水口0.9米,下边缘水流形状与上边缘相同,且喷水口是最高点.
素材2
路边的绿化带宽4米
素材3
绿化带正中间种植了行道树,为了防治病虫害、增加行道树的成活率,园林工人给树木“打针”,针一般打在离地面1.5米到2米的高度(包含端点).
问题解决
任务1
确定上边缘水流形状
建立如图所示直角坐标系,求上边缘抛物线的函数表达式
任务2
探究灌溉范围
灌溉车行驶过程中喷出的水能浇灌到整个绿化带吗?请说明理由
任务3
拟定设计方案
灌溉时,发现水流的上下两边缘冲击力最强,喷到针筒容易造成针筒脱落,那么请问在满足最大灌溉面积的前提下对行道树“打针”是否有影响,并说明理由;若你认为有影响,请给出具体的“打针”范围.
如何调整蔬菜大棚的结构?
我国的大棚(如图1)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在墙体上,另一端固定在墙体上,其横截面有2根支架 , 相关数据如图2所示,其中 , .
已知大棚有200根长为的支架和200根长为的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为60元/米(接口忽略不计),现有改造经费32000元.
确定大棚形状
在图2中以点O为原点,所在直线为y轴建立平面直角坐标系,求抛物线的函数表达式.
尝试改造方案
当米,只考虑经费情况下,请通过计算说明能否完成改造.
拟定最优方案
只考虑经费情况下,求出的最大值.
如何设计喷泉安全通道?
在抛物线形的喷泉水柱下设置一条安全的通道,可以让儿童在任意时间穿过安全通道时不被水柱喷到(穿梭过程中人的高度变化忽略不计).
图1为音乐喷泉,喷头的高度在垂直地面的方向上随着音乐变化而上下移动.不同高度的喷头喷出来的水呈抛物线型或抛物线的一部分,但形状相同,最高高度也相同,水落地点都在喷水管的右侧.
图2是当喷水头在地面上时(喷水头最低),其抛物线形水柱的示意图,水落地点离喷水口的距离为 , 水柱最高点离地面 .
图3是某一时刻时,水柱形状的示意图.为喷水管,为水的落地点,记长度为喷泉跨度.
安全通道在线段上,若无论喷头高度如何变化,水柱都不会进入上方的矩形区域,则称这个矩形区域为安全区域.
确定喷泉形状.
在图2中,以为原点,所在直线为轴,建立平面直角坐
标系,求出抛物线的函数表达式.
确定喷泉跨度的最小值.
若喷水管最高可伸长到 , 求出喷泉跨度的最小值.
设计通道位置及儿童的身高上限.
现在需要一条宽为的安全通道 , 为了确保进入安全通道
上的任何人都能在安全区域内,则能够进入该安全通道的人
的最大身高为多少?(精确到)
【探索】
如图 2,公园有一斜坡草坪(可看作线段 ),其倾斜角为 ,用喷水枪喷水的路径可看作抛物线 ,其最远处落在草坪的 处.若在山上种一棵树 (垂直于水平面),为了保证灌溉,树的最高点不能超过喷水路线,同时为了加固树,沿斜坡垂直方向加一根支架 ,请求出支架 的最大值.
如图3,原有斜坡倾斜角 不变,通过改造喷水枪使喷水路径可看作圆弧,此时,圆弧与 轴相切于点 ,若 ,为了保证灌溉山上种植的这棵树 (垂直于水平面),即树的最高点不能超过喷水路线,请问树高 的最大值是多少?
①求的取值范围;
②若水刚好喷到中心线上,且距水面高3.25m处,直接写出此时的值______.