0
返回首页
1. 在二次根式的计算中,经常会出现
,
这样的式子,其实可以将其进一步化简.例如:
;
。以上这种化简的步骤叫做分母有理化。
根据以上化简方法,解答下列问题:
(1)
化简:
;
(2)
请通过计算比较
与
的大小;
(3)
计算
。
【考点】
分母有理化; 二次根式的加减法;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 已知
+
+
+…+
=
,求n的值.
解答题
困难
2. 在进行二次根式的运算时,如遇到
这样的式子,还需做进一步的化简:
这种化去分母中根号的运算叫分母有理化.
请参照以上方法化简:
解答题
普通
3. 我们已经知道
,因此将
分子、分母同时乘以“
+3”,分母就变成了4.请仿照这种方法化简:
.
解答题
普通
1. 下列各式不成立的是( )
A.
B.
C.
D.
单选题
普通
2. 观察下列运算过程:
……
请运用上面的运算方法计算:
=
.
填空题
普通