0
返回首页
1. 如图,将菱形
的边
和
分别延长至点E和点F,且使
,
, 连接
,
,
,
,
.
(1)
求证:四边形
是矩形;
(2)
若
,
, 求
的长.
【考点】
勾股定理; 菱形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,Q为AB的中点.动点P从点A出发沿折线AC--CB以每秒2个单位长度的速度运动,连结PQ,以PQ为边构造正方形PMNQ且边MN与点B始终在边PQ同侧.设点P的运动时间为t秒(>0).
(1)
线段AB的长为
(2)
当点P在边AC上运动时,线段CP的长为
▲
(用含t的代数式表示) .
①当正方形PMNQ与△ABC重叠部分图形是正方形时,求t的取值范围.
②当边MN的中点落在△ABC的边上时,求正方形PMNQ的面积.
(3)
当点P不与点C重合时,作点C关于直线PQ的对称点C'当PC'⊥AB时,直接写出t的值.
综合题
普通
2. 在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.
(1)
概念理解:在直角三角形中,直角的勾股差为
;在底边长为2的等腰三角形中,底角的勾股差为
;
(2)
性质探究:如图1,
是
的中线,
,记
中
的勾股差为
中
的勾股差为
;
①求
的值(用含
的代数式表示);
②试说明
与
互为相反数;
(3)
性质应用:如图2,在四边形
中,点
与
分别是
与
的中点,连接
,若
,且
,求
的值.
综合题
普通
3. 已知线段a=4cm.
(1)
用尺规作图作一个边长为4cm的菱形ABCD,使∠A=60°(保留作图痕迹),
(2)
求这个菱形的面积.
综合题
普通
1. 如图,在菱形
中,
,点
分别在边
上,将四边形
沿
翻折,使
的对应线段
经过顶点
,当
时,
的值是
.
填空题
困难
2. 如图,菱形
中,对角线
与
相交于点
,若
,
,则
的长为
cm.
填空题
普通
3. 一个菱形的边长为
,面积为
,则该菱形的两条对角线的长度之和为( )
A.
B.
C.
D.
单选题
普通